Homological Projective Duality

Alexander Kuznetsov^{*}

1 Preliminaries

Motivating Question: Assume that we know D(X), the bounded derived category of coherent sheaves on a smooth projective variety $X \subset \mathbb{P}^n$. What can we say about $D(X_H)$ for $X_H = X \cap H$, a hyperplane section of X?

First, we need to explain what we mean by claiming to "know" D(X).

Definition 1.1. Let \mathcal{T} be a triangulated category. A semiorthogonal decomposition of \mathcal{T} is a collection $\mathcal{T}_0, \ldots, \mathcal{T}_{n-1}$ of full triangulated subcategories such that

- 1. $Hom(\mathcal{T}_i, \mathcal{T}_j) = 0$ for i > j,
- 2. for any $F \in \mathcal{T}$ there exists a chain of morphisms $0 = F_n \to F_{n-1} \to \ldots \to F_1 \to F_0 = F$ such that $Cone(F_{i+1} \to F_i) \in \mathcal{T}_i$.

Remark 1.2. If $\mathcal{T} = D(X)$ for a smooth projective X then the categories $\mathcal{T}_i \subset D(X)$ are admissible, i.e. there exist both left and right adjoints to the inclusion functor.

Remark 1.3. Because of the first condition the chain $0 = F_n \rightarrow F_{n-1} \rightarrow \ldots \rightarrow F_1 \rightarrow F_0 = F$ is unique and functorial.

The simplest triangulated category is $D(\mathbf{k})$ - the derived category of k-vector spaces.

Definition 1.4. An object $E \in \mathcal{T}$ is exceptional if $Hom(E, E) = \mathbf{k}$ and $Ext^i(E, E) = Hom(E, E[i]) = 0$ for $i \neq 0$.

If E is an exceptional object then the functor $D(\mathbf{k}) \to \mathcal{T}$ defined by $V \mapsto V \otimes E$ is fully faithful.

Definition 1.5. A sequence E_0, \ldots, E_{n-1} of exceptional objects is an exceptional collection if $Ext^k(E_i, E_j) = 0$ for i > j and all k. An exceptional collection is full if $\langle E_0, \ldots, E_{n-1} \rangle = \mathcal{T}$, where $\langle E_0, \ldots, E_{n-1} \rangle$ denotes the smallest triangulated subcategory of \mathcal{T} containing the objects E_0, \ldots, E_{n-1} .

If E_0, \ldots, E_{n-1} is a full exceptional collection, then we have a semiorthogonal decomposition $\mathcal{T} = \langle E_0, \ldots, E_{n-1} \rangle = \langle D(\mathbf{k}), \ldots, D(\mathbf{k}) \rangle$ with *n* components.

Example. If $X = \mathbb{P}^n$, then for example $D(X) = \langle \mathcal{O}, \dots, \mathcal{O}(n) \rangle$.

Now, we can reformulate the question we have started with.

Motivating Question: Suppose we know a semiorthogonal decomposition for D(X). Can we construct a semiorthogonal decomposition for $D(X_H)$?

We need some compatibility conditions between the semiorthogonal decomposition and the projective embedding $f: X \hookrightarrow \mathbb{P}^n$.

Examples.

- 1. For id: $X = \mathbb{P}^n \hookrightarrow \mathbb{P}^n$ and a hyperplane $H \subset \mathbb{P}^n$ we have $D(X_H) = D(H) = \langle \mathcal{O}, \dots, \mathcal{O}(n-1) \rangle$.
- 2. For the second Veronese embedding $\nu_2 \colon X = \mathbb{P}^n \hookrightarrow \mathbb{P}^N$, $N = \binom{n+1}{2} 1$ and the hyperplane $H \subset \mathbb{P}^N$, the hyperplane section $X_H \cong Q^{n-1}$ is isomorphic to a quadric and we have $D(X_H) = \langle \mathcal{C}_H, \mathcal{O}, \dots, \mathcal{O}(n-2) \rangle$.

^{*}Lecture notes taken during the workshop "Homological Projective Duality and Noncommutative Geometry" at University of Warwick, 8-13 October 2012.

Remark 1.6. Abstractly the category C_H does not depend on the place we put it in the decomposition; we have

$$D(Q^{n-1}) = \langle \mathcal{C}_H, \mathcal{O}, \dots, \mathcal{O}(n-2) \rangle = \langle \mathcal{O}, \mathcal{C}_H^1, \mathcal{O}(1), \dots, \mathcal{O}(n-2) \rangle = \dots = \langle \mathcal{O}, \dots, \mathcal{O}(n-2), \mathcal{C}_H^{n-1} \rangle$$

and

$$\mathcal{C}_H \cong \mathcal{C}_H^1 \cong \ldots \cong \mathcal{C}_H^{n-1}$$

- 3. More generally, for $d \leq n+1$ and the *d*-th Veronese embedding $\nu_d \colon X = \mathbb{P}^n \hookrightarrow \mathbb{P}^N$ we have $D(X_H) = \langle \mathcal{C}^d_H, \mathcal{O}, \dots, \mathcal{O}(n-d) \rangle$,
- 4. For $\nu_d: X = \mathbb{P}^n \hookrightarrow \mathbb{P}^N$ and hyperplanes $H_1, \ldots, H_k \subset \mathbb{P}^N$ such that $\dim X_{H_1 \ldots H_k} = \dim X k$ we have $D(X_{H_1 \ldots H_k}) = \langle \mathcal{C}^d_{H_1 \ldots H_k}, \mathcal{O}, \ldots, \mathcal{O}(n dk) \rangle.$

Definition 1.7. A Lefschetz decomposition of D(X) with respect to $\mathcal{O}_X(1)$ is a chain of full triangulated subcategories $0 \subset \mathcal{A}_{i-1} \subset \mathcal{A}_{i-2} \subset \ldots \subset \mathcal{A}_1 \subset \mathcal{A}_0$ such that $D(X) = \langle \mathcal{A}_0, \mathcal{A}_1(1), \ldots, \mathcal{A}_{i-1}(i-1) \rangle$ is a semiorthogonal decomposition. Here,

$$\mathcal{A}_k(k) := \{ A(k) \, | \, A \in \mathcal{A}_k \}.$$

Examples.

- 1. For $X = \mathbb{P}^n$ and $\mathcal{O}_X(1) = \mathcal{O}_{\mathbb{P}^n}(1)$ we can consider the following Lefschetz decompositions:
 - a Lefschetz decomposition of length i = n + 1 with $\mathcal{A}_{i-1} = \ldots = \mathcal{A}_0 = \langle \mathcal{O} \rangle$,
 - a Lefschetz decomposition of length i = n with $\mathcal{A}_0 = \langle \mathcal{O}, \mathcal{O}(1) \rangle, \mathcal{A}_1 = \ldots = \mathcal{A}_{i-1} = \langle \mathcal{O}(1) \rangle$

and there are many other.

In particular, we see that a Lefschetz decomposition is an additional structure on an exceptional collection.

- 2. For $X = \mathbb{P}^n$ and $\mathcal{O}_X(1) = \mathcal{O}_{\mathbb{P}^n}(2)$
 - if n+1 is even then $i = \frac{n+1}{2}$ and $\mathcal{A}_{i-1} = \ldots = \mathcal{A}_0 = \langle \mathcal{O}, \mathcal{O}(H) \rangle$ is a Lefschetz decomposition,
 - if n + 1 is odd then $i = \frac{n+2}{2}$ and $\mathcal{A}_{i-1} = \langle \mathcal{O} \rangle$, $\mathcal{A}_{i-2} = \ldots = \mathcal{A}_0 = \langle \mathcal{O}, \mathcal{O}(1) \rangle$ is a Lefschetz decomposition.
- 3. $X = Q^n$, an *n*-dimensional quadric, $\mathcal{O}_X(1) = \mathcal{O}_{Q^n}(1)$
 - If n is odd, then $D(X) = \langle S, \mathcal{O}, \dots, \mathcal{O}(n-1) \rangle$ for a spinor bundle S. X has a Lefschetz decomposition with $i = n, \mathcal{A}_0 = \langle S, \mathcal{O} \rangle$, and $\mathcal{A}_1 = \dots = \mathcal{A}_{i-1} = \langle \mathcal{O} \rangle$.
 - If n is even, $D(X) = \langle S_+, S_-, \mathcal{O}, \dots, \mathcal{O}(n-1) \rangle$ for spinor bundles S_+ and S_- . X has a Lefschetz decomposition with i = n, $\mathcal{A}_0 = \langle S_+, S_-, \mathcal{O} \rangle$ and $\mathcal{A}_1 = \dots = \mathcal{A}_{i-1} = \langle \mathcal{O} \rangle$.
 - By mutation we also get that $D(X) = \langle S_+, \mathcal{O}, S_+(1), \mathcal{O}(1), \dots, \mathcal{O}(n-1) \rangle$. Then we get a Lefschetz decomposition with i = n, $\mathcal{A}_0 = \mathcal{A}_1 = \langle \mathcal{O}, S_+ \rangle$ and $\mathcal{A}_2 = \dots = \mathcal{A}_{i-1} = \langle \mathcal{O} \rangle$.
- 4. For any X we have a stupid decomposition with i = 1 and $\mathcal{A}_0 = D(X)$.

Proposition 1.8. Let $D(X) = \langle \mathcal{A}_0, \mathcal{A}_1(1), \dots, \mathcal{A}_{i-1}(i-1) \rangle$ be a Lefschetz decomposition, $H \in \Gamma(X, \mathcal{O}_X(1))$ and $i: X_H = \{H = 0\} \hookrightarrow X$. Note that X_H does not have to be smooth. Then

- 1. The left derived functor $i^*|_{\mathcal{A}_k} : \mathcal{A}_k \to D(X_H)$ is fully faithful for $k \ge 1$. (It is not fully faithful on $\langle \mathcal{A}_k, \mathcal{A}_{k+1}(1) \rangle$.)
- 2. $i^*(\mathcal{A}_1(1)), \ldots, i^*(\mathcal{A}_{i-1}(i-1))$ are semiorthogonal in $D(X_H)$.

3.
$$D(X_H) = \langle C_H, i^*(A_1(1)), \dots, i^*(A_{i-1}(i-1)) \rangle.$$

Proof. 1. Projection formula gives

$$\operatorname{Hom}(i^*F, i^*G) = \operatorname{Hom}(F, i_*i^*G) = \operatorname{Hom}(F, G \otimes i_*\mathcal{O}_{X_H}).$$

The short exact sequence on X

$$0 \to \mathcal{O}(-1) \to \mathcal{O} \to i_*\mathcal{O}_{X_H} \to 0$$

gives after tensoring with G

$$0 \to G(-1) \to G \to G \otimes i_* \mathcal{O}_{X_H} \to 0$$

We get a long exact sequence

$$\ldots \to \operatorname{Hom}(F, G(-1)) \to \operatorname{Hom}(F, G) \to \operatorname{Hom}(F, G \otimes i_* \mathcal{O}_{X_H}) \to \ldots$$

As $F \in \mathcal{A}_k(k)$ and $G(-1) \in \mathcal{A}_k(k-1) \subset \mathcal{A}_{k-1}(k-1)$, we know that $\operatorname{Hom}(F, G(-1)) = 0$. Hence we get an isomorphism $\operatorname{Hom}(F, G) \cong \operatorname{Hom}(i^*F, i^*G)$.

- 2. For $k > l \ge 1$, $F \in \mathcal{A}_k(k)$ and $G \in \mathcal{A}_l(l)$ the same argument as above proves semiorthogonality.
- 3. We need to show that $i^*(\mathcal{A}_i(i))$ is an admissible subcategory of $D(X_H)$. We know that $\mathcal{A}_i(i)$ is an admissible subcategory of D(X). It follows that $\mathcal{A}_i(i)$ is saturated and any fully faithful embedding is admissible.

Some properties of Lefschetz decomposition

Given a Lefschetz decomposition $\langle \mathcal{A}_0, \mathcal{A}_1(1), \dots, \mathcal{A}_{i-1}(i-1) \rangle$ we have:

• $\langle \mathcal{A}_0, \mathcal{A}_0(1), \dots, \mathcal{A}_0(r) \rangle = \langle \mathcal{A}_0, \mathcal{A}_1(1), \dots, \mathcal{A}_r(r) \rangle = \langle \mathcal{A}_{r+1}(r+1), \dots, \mathcal{A}_{i-1}(i-1) \rangle^{\perp}.$

The last equality is by the semiorthogonality of the Lefschetz decomposition. The first equality follows from it and from the obvious inclusions

$$\langle \mathcal{A}_0, \mathcal{A}_1(1), \dots, \mathcal{A}_r(r) \rangle \subset \langle \mathcal{A}_0, \mathcal{A}_0(1), \dots, \mathcal{A}_0(r) \rangle ,$$

$$\langle \mathcal{A}_0, \mathcal{A}_0(1), \dots, \mathcal{A}_0(r) \rangle \subset \langle \mathcal{A}_{r+1}(r+1), \dots, \mathcal{A}_{i-1}(i-1) \rangle^{\perp} .$$

• A Lefschetz decomposition can be reconstructed from its \mathcal{A}_0 via the recurrent formula

$$\mathcal{A}_r =^{\perp} \mathcal{A}_0(-r) \cap \mathcal{A}_{r-1}$$

Question: Find nice sufficient conditions on \mathcal{A}_0 which would imply that \mathcal{A}_0 extends to a Lefschetz decomposition. The subtlety here is in showing admissibility.

• There is a natural partial order on the set of Lefschetz decompositions, $\mathcal{A}_{\bullet} \leq \mathcal{A}_{\bullet}'$ if $\mathcal{A}_0 \subset \mathcal{A}_0'$.

Definition 1.9. A Lefschetz decomposition is minimal if it is minimal with respect to the above partial order.

Question: Is it true that a minimal Lefschetz decomposition always exists? Can a decreasing sequence of admissible subcategories be infinite? If $\mathcal{A}_{\bullet} < \mathcal{A}'_{\bullet}$ then $\mathcal{A}_0 \subsetneq \mathcal{A}'_0$ and

$$\langle \mathcal{A}'_1(1), \ldots, \mathcal{A}'_{j-1}(j-1) \rangle = {}^{\perp} \mathcal{A}'_0 \subsetneq {}^{\perp} \mathcal{A}_0 = \langle \mathcal{A}_1(1), \ldots, \mathcal{A}_{i-1}(i-1) \rangle.$$

Question: How can one prove a Lefschetz decomposition to be minimal?

Definition 1.10. A Lefschetz decomposition is rectangular if $A_0 = A_1 = \ldots = A_{i-1}$.

Examples:

- For $X = \mathbb{P}^n$, an exceptional collection $\langle \mathcal{O}, \ldots, \mathcal{O}(n) \rangle$ gives a rectangular Lefschetz decomposition with respect to $\mathcal{O}(d)$ if and only if n + 1 is divisible by d.
- For X = Gr(2,5) and the Plücker embedding $i : X \hookrightarrow \mathbb{P}^9$ the Kapranov's exceptional collection gives a Lefschetz decomposition

$$D(X) = \langle \mathcal{A}_0, \dots, \mathcal{A}_3(3) \rangle$$

with respect to $i^*\mathcal{O}(1)$. Here

$$\mathcal{A}_{0} = \left\langle \mathcal{O}, \mathcal{U}^{*}, S^{2}(\mathcal{U}^{*}), S^{3}(\mathcal{U}^{*}) \right\rangle, \quad \mathcal{A}_{1} = \left\langle \mathcal{O}, \mathcal{U}^{*}, S^{2}(\mathcal{U}^{*}) \right\rangle, \quad \mathcal{A}_{2} = \left\langle \mathcal{O}, \mathcal{U}^{*} \right\rangle, \quad \mathcal{A}_{3} = \left\langle \mathcal{O} \right\rangle$$

and \mathcal{U} is the tautological vector bundle on Gr(2,5).

There is also another, rectangular Lefschetz decomposition with respect to the same line bundle

$$D(X) = \langle \mathcal{A}'_0, \dots, \mathcal{A}'_4(4) \rangle$$

with $\mathcal{A}'_0 = \ldots = \mathcal{A}'_4 = \langle \mathcal{O}, \mathcal{U}^* \rangle$. This Lefschetz decomposition gives by Proposition 1.8 eight exceptional objects on a hyperplane section of X; if the section is generic these objects generate $D(X_H)$. Note that Kapranov's decomposition gives only six exceptional objects on X_H .

Lemma 1.11. Assume that $\langle \mathcal{A}_0, \ldots, \mathcal{A}_{i-1}(i-1) \rangle$ is a rectangular Lefschetz decomposition and $\omega_X = \mathcal{O}_X(-i)$. Then \mathcal{A}_{\bullet} is minimal.

Proof. Suppose, contrary to our claim, that $\mathcal{A}'_{\bullet} < \mathcal{A}_{\bullet}$. Then $\mathcal{A}'_0 \subsetneq \mathcal{A}_0$ and we have

$$\langle \mathcal{A}'_0, \mathcal{A}'_1(1), \dots, \mathcal{A}'_{i-1}(i-1) \rangle \subsetneq \langle \mathcal{A}_0, \mathcal{A}_0(1), \dots, \mathcal{A}_0(i-1) \rangle$$

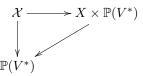
since both the LHS and the RHS are semiorthogonal decompositions and $\mathcal{A}'_r(r) \subset \mathcal{A}'_0(r) \subsetneq \mathcal{A}_0(r)$.

Since the RHS is the whole of D(X), we conclude that \mathcal{A}'_i is non-trivial. Let F be a non-zero element of \mathcal{A}'_i . We have by Serre duality

$$\operatorname{Hom}^{\bullet}(F,F) \simeq \operatorname{Hom}^{\bullet}(F,F(-i)[\dim X]) = \operatorname{Hom}^{\bullet}(F(i),F)[\dim X]$$
(1)

and the RHS of (1) is zero since $\operatorname{Hom}^{\bullet}(\mathcal{A}'_{i}(i), \mathcal{A}'_{0}) = 0$ by the semiorthogonality of \mathcal{A}'_{\bullet} . But this is impossible, as the LHS of (1) must contain the identity endomorphism of F.

For an embedding $f: X \to \mathbb{P}(V)$ and a Lefschetz decomposition with respect to $\mathcal{O}_X(1) = f^*(\mathcal{O}_{\mathbb{P}(V)}(1))$ we get a category \mathcal{C}_H in $D(X_H)$ for every hyperplane $H \in \mathbb{P}(V^*)$. Hence we get a family of categories $\{\mathcal{C}_H\}_{H\in\mathbb{P}(V^*)}$. To understand how these categories fit together we look at the universal hyperplane section $\mathcal{X} = \{(x, H) \in X \times \mathbb{P}(V^*) \mid x \in X_H\}$ of X. \mathcal{X} fits into a diagram



By the Küneth formula we have

$$\operatorname{Hom}_{X \times \mathbb{P}(V^*)}(F_1 \boxtimes G_1, F_2 \boxtimes G_2) = \operatorname{Hom}_X(F_1, F_2) \otimes \operatorname{Hom}_{\mathbb{P}(V^*)}(G_1, G_2)$$

and, therefore, we obtain a Lefschetz decomposition

$$D(X \times \mathbb{P}(V^*)) = \langle \mathcal{A}_0 \boxtimes D(\mathbb{P}(V^*)), \dots, \mathcal{A}_{i-1}(i-1) \boxtimes D(\mathbb{P}(V^*)) \rangle,$$

where

$$\mathcal{A}_k \boxtimes D(\mathbb{P}(V^*)) := \{ A \boxtimes F \, | \, A \in \mathcal{A}_k, \, F \in D(\mathbb{P}(V^*)\} \hookrightarrow D(X \times \mathbb{P}(V^*)).$$

It is a Lefschetz decomposition with respect to $\mathcal{O}_X(1) \boxtimes L$ for any line bundle L on $\mathbb{P}(V^*)$. $\mathcal{X} \subset X \times \mathbb{P}(V^*)$ is a divisor whose structure sheaf $\mathcal{O}_{\mathcal{X}}$ fits into a short exact sequence

$$0 \to \mathcal{O}_X(-1) \boxtimes \mathcal{O}_{\mathbb{P}(V^*)}(-1) \to \mathcal{O}_{X \times \mathbb{P}(V^*)} \to \mathcal{O}_{\mathcal{X}} \to 0.$$

Arguing as in the proof of Prop. 1.8 we obtain a semiorthogonal decomposition

$$D(\mathcal{X}) = \langle \mathcal{C}, \mathcal{A}_1(1) \boxtimes D(\mathbb{P}(V^*)), \dots, \mathcal{A}_{i-1}(i-1) \boxtimes D(\mathbb{P}(V^*)) \rangle.$$

The category C is the total family of $\{C_H\}$ in the sense detailed below.

Base change for semiorthogonal decompositions

Definition 1.12. For $X \xrightarrow{p} S$ a subcategory $\mathcal{T} \subset D(X)$ is S-linear is for any $F \in D^{perf}(S)$ we have an inclusion $\mathcal{T} \otimes p^* F \subset \mathcal{T}$.

Remark 1.13. A pullback of $F \in D(S)$ can be unbounded; if p is flat then we can replace $D^{\text{perf}}(S)$ by D(S) in the definition above.

Definition 1.14. Morphisms $p: X \to S$ and $f: S' \to S$ are Tor-independent if for any $x \in X$ and $s' \in S'$ such that p(x) = s = f(s') the groups $Tor_{>0}^{\mathcal{O}_{S,s}}(\mathcal{O}_{X,x}, \mathcal{O}_{S',s'})$ are zero.

Remark 1.15. If either p or f is flat then p and f are Tor-independent. If p and f are closed embeddings than they are Tor-independent if and only if they are transversal.

Let $X' = X \times_S S'$ and consider the diagram

Theorem 1.16. Let $D(X) = \langle \mathcal{T}_0, \ldots, \mathcal{T}_{n-1} \rangle$ be an S-linear semiorthogonal decomposition. If p and f are Tor-independent, there exists an S'-linear semiorthogonal decomposition $D(X') = \langle \mathcal{T}'_0, \ldots, \mathcal{T}'_{n-1} \rangle$ such that $\tilde{f}^*(\mathcal{T}^{perf}_i) \subset \mathcal{T}'_i$. Here, $\mathcal{T}^{perf}_i = \mathcal{T}_i \cap D^{perf}(X)$. In fact, \mathcal{T}'_i is the completion of $\mathcal{T}^{perf}_i \boxtimes D^{perf}(S')$ with respect to certain homotopy colimits.

We have the following picture

$$\begin{array}{ccc} X_H & \xrightarrow{\iota} & \mathcal{X} & \longrightarrow & X \times \mathbb{P}(V^*) \\ & & & & \downarrow \\ & & & \downarrow \\ \mathrm{Spec}(k) & \longrightarrow & \mathbb{P}(V^*) \end{array}$$

As the subcategories $\mathcal{A}_i(i) \boxtimes D(\mathbb{P}(V^*))$ are $D(\mathbb{P}(V^*))$ -linear, the category

$$\mathcal{C} =^{\perp} \langle \mathcal{A}_1(1) \boxtimes D(\mathbb{P}(V^*)), \mathcal{A}_2(2) \boxtimes D(\mathbb{P}(V^*)), \dots, \mathcal{A}_{i-1}(i-1) \boxtimes D(\mathbb{P}(V^*)) \rangle$$

is also $D(\mathbb{P}(V^*))$ -linear. The map $\mathcal{X} \to \mathbb{P}(V^*)$ is flat and hence by the base change \mathcal{C}_H is the completion of $\iota^*(\mathcal{C}^{perf})$ with respect to certain homotopy colimits.

2 Main theorem

Let $\gamma: \mathcal{C} = \operatorname{Tot} \{\mathcal{C}_H\}_{H \in \mathbb{P}(V^*)} \to D(\mathcal{X})$ be the natural inclusion and let $\gamma^*: D(\mathcal{X}) \to \mathcal{C}$ be its left adjoint. Let π be the projective bundle map $\mathcal{X} \xrightarrow{\pi} X$.

Definition 2.1. A Homological Projective Dual of

$$(X, f: X \to \mathbb{P}(V), \mathcal{A}_{\bullet}),$$

where $\mathcal{A}_{\bullet} = \mathcal{A}_{i-1} \subset \ldots \subset \mathcal{A}_0$ is a Lefschetz decomposition of D(X) with respect to $f^*(\mathcal{O}(1))$, is

$$(Y, g: Y \to \mathbb{P}(V^*), \mathcal{B}_{\bullet}),$$

where $\mathcal{B}_{\bullet} = \mathcal{B}_{j-1} \subset \ldots \subset \mathcal{B}_0$ is a Lefschetz decomposition of D(Y) with respect to $g^*(\mathcal{O}(1))$, such that there exists $\mathcal{E} \in D(Y \times_{\mathbb{P}(V^*)} \mathcal{X})$ inducing a $\mathbb{P}(V^*)$ -linear equivalence $\Phi_{\mathcal{E}} \colon D(Y) \to \mathcal{C}$ and $\gamma^* \pi^*(\mathcal{A}_0) = \Phi_{\mathcal{E}}(\mathcal{B}_0)$.

Theorem 2.2. Let $(Y, g, \mathcal{B}_{\bullet})$ be a Homological Projective Dual of $(X, f, \mathcal{A}_{\bullet})$. Choose $L \subset V^*$ of dimension r and put $X_L = X \times_{\mathbb{P}(V)} \mathbb{P}(L^{\perp}), Y_L = Y \times_{\mathbb{P}(V^*)} \mathbb{P}(L)$, where $L^{\perp} = Ker(V \to L^*)$. If

$$\dim X_L = \dim X - r, \qquad \qquad \dim Y_L = \dim Y - N + r \tag{2}$$

(where $N = \dim V$) then

$$D(X_L) = \langle \mathcal{C}_L, \mathcal{A}_r(r), \dots, \mathcal{A}_{i-1}(i-1) \rangle$$

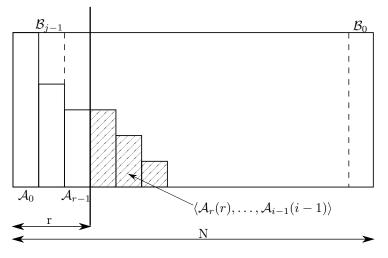
$$D(Y_L) = \langle \mathcal{C}_L, \mathcal{B}_{N-r}(N-r), \dots, \mathcal{B}_{j-1}(j-1) \rangle$$

Remark 2.3. If X_L and Y_L do not have expected dimensions then we do not have Tor-independence and have to consider a derived fiber product.

It is possible to show that

$$j = N - 1 - \max\{k \mid \mathcal{A}_k = \mathcal{A}_0\}.$$

Lefschetz decompositions \mathcal{A}_{\bullet} and \mathcal{B}_{\bullet} fit into the following picture.



In particular, if the decomposition \mathcal{A}_{\bullet} is rectangular then either $\mathcal{C}_L = D(X_L)$ or $\mathcal{C}_L = D(Y_L)$.

Example. Let X be $Gr(2, W) \subset \mathbb{P}(\Lambda^2 W)$ embedded via the Plücker embedding and let dim W = 5. Recall that D(X) has a rectangular Lefshetz decomposition

$$D(X) = \langle \mathcal{A}_0, \mathcal{A}_1(1), \dots, \mathcal{A}_4(4) \rangle$$

with each $\mathcal{A}_i = \langle \mathcal{O}, \mathcal{U}^* \rangle$ where \mathcal{U} is the tautological bundle on X. We have N = 10 and the picture for \mathcal{A}_{\bullet} is

The homological projective dual of X is $Y = \operatorname{Gr}(2, W^*) \subset \mathbb{P}(\Lambda^2 W^*)$. We have dim $X = \dim Y = 6$.

- For r = 1 the condition (2) forces Y_L to be empty. Hence $C_L = 0$ and $D(X_L) = \langle \mathcal{A}_1(1), \ldots, \mathcal{A}_4(4) \rangle$ is a full exceptional collection consisting of eight vector bundles.
- For r = 2 and general L we have again $Y_L = \emptyset$, $C_L = 0$ and $D(X_L) = \langle \mathcal{A}_2(2), \ldots, \mathcal{A}_4(4) \rangle$ is a full exceptional collection of six vector bundles.
- For r = 3 an general L we have $Y_L = \emptyset$, $C_L = 0$ and X_L , a Fano threefold of index two and degree five, has a semiorthogonal decomposition $D(X_L) = \langle \mathcal{A}_3(3), \mathcal{A}_4(4) \rangle$.
- For r = 4 and general L the variety Y_L is a union of five points, $C_L = D(Y_L)$ and X_L has a semiorthogonal decomposition $D(X_L) = \langle D(Y_L), \mathcal{A}_4(4) \rangle$. If Y_L is smooth, then $D(Y_L)$ is generated by five exceptional objects and X_L is a del Pezzo of degree 5.
- For r = 5 and general L both X_L and Y_L are elliptic curves and $D(X_L) = D(Y_L)$.
- For $r = 6, \ldots 10$ the situation is symmetric.

Lemma 2.4. Let $(Y, g, \mathcal{B}_{\bullet})$ be a homological projective dual of $(X, f, \mathcal{A}_{\bullet})$. Then the set Crit(g) of critical values of g is the classical projective dual of X

$$X^{\vee} = \{ H \in \mathbb{P}(V^*) \,|\, X_H \text{ is singular } \}.$$

Indeed, by definition there is a semiorthogonal decomposition

$$D(\mathcal{X}) = \langle D(Y), \mathcal{A}_1(1) \boxtimes D(\mathbb{P}(V^*)), \mathcal{A}_2(2) \boxtimes D(\mathbb{P}(V^*)), \dots, \mathcal{A}_{i-1}(i-1) \boxtimes D(\mathbb{P}(V^*)) \rangle.$$

By base change we get that

$$D(X_H) = \langle D(Y_H), \mathcal{A}_1(1), \dots, \mathcal{A}_{i-1}(i-1) \rangle.$$

Recall also that a projective scheme Z is smooth if and only if D(Z) is Ext-finite. The categories $\mathcal{A}_i(i)$ are subcategories of D(X) and therefore Ext-finite. Using this fact and the above semiorthogonal decomposition one can show that X_H is smooth if and only if Y_H is . Then for a hyperplane $H \in \mathbb{P}(V^*)$ we've

$$H \in \operatorname{Crit}(g) \Leftrightarrow Y_H$$
 is not smooth $\Leftrightarrow X_H$ is not smooth $\Leftrightarrow H \in X^{\vee}$.

Remark 2.5. If $(Y, g, \mathcal{B}_{\bullet})$ is an HPD of $(X, f, \mathcal{A}_{\bullet})$ then Y is smooth (uses the fact that \mathcal{X} is smooth).

For a Lefschetz decomposition

$$D(X) = \langle \mathcal{A}_0, \mathcal{A}_1(1), \dots, \mathcal{A}_{i-1}(i-1) \rangle$$

denote by \mathfrak{a}_k the category $\mathcal{A}_{k+1}^{\perp} \cap \mathcal{A}_k$, called the *k*-th primitive category of the Lefschetz decomposition of D(X). Then $\mathcal{A}_k = \langle \mathfrak{a}_k, \mathcal{A}_{k+1} \rangle = \langle \mathfrak{a}_k, \dots, \mathfrak{a}_{i-1} \rangle$. In particular

$$\mathcal{A}_0 = \langle \mathfrak{a}_0, \dots, \mathfrak{a}_{i-1} \rangle$$

Denote by $\alpha_0^*: D(X) \to \mathcal{A}_0$ the left adjoint to the inclusion functor. Then $\alpha_0^*(\mathcal{A}_k(k)) = 0$ and $\alpha_0^*(\mathfrak{a}_k(l)) = 0$ for $l \leq k$.

Lemma 2.6. $\alpha_0^*(\mathfrak{a}_k(k+1)) \to \mathcal{A}_0$ is fully faithful and

$$\mathcal{A}_0 = \left\langle \alpha_0^*(\mathfrak{a}_0(1)), \alpha_0^*(\mathfrak{a}_1(2)), \dots \alpha_0^*(\mathfrak{a}_{i-1}(i)) \right\rangle.$$

The decomposition in the above lemma is the *dual primitive decomposition* of \mathcal{A}_0 .

Recall the composition of functors $D(X) \xrightarrow{\pi^*} D(\mathcal{X}) \xrightarrow{\gamma^*} \mathcal{C}$.

Lemma 2.7. The composition $\gamma^* \circ \pi^*$ is fully faithful on \mathcal{A}_0 and we denote its image by $\mathcal{C}_0 = \gamma^* \pi^*(\mathcal{A}_0)$.

The category $\mathcal{C}_0 \subset \mathcal{C}$ is admissible because \mathcal{A}_0 is saturated. For any k > 0 define category \mathcal{C}_k as

 $\gamma^* \pi^* \big(\langle \alpha_0^*(\mathfrak{a}_0(1)), \alpha_0^*(\mathfrak{a}_1(2)), \dots, \alpha_0^*(\mathfrak{a}_{N-k-2}(N-k-1)) \rangle \big) \subset \mathcal{C}_0.$

Since \mathcal{C} is $\mathbb{P}(V^*)$ -linear the map $p: \mathcal{X} \to \mathbb{P}(V^*)$ allows to define the endofunctor [-](1) on the category \mathcal{C} by $F \mapsto F \otimes p^* \mathcal{O}_{\mathbb{P}(V^*)}(1)$.

Lemma 2.8. \mathcal{C}_{\bullet} is a Lefshetz decomposition of \mathcal{C} with respect to the endofunctor [-](1) defined above.

This is the dual decomposition of $\mathcal{C} \cong D(Y)$. These categories will be used in the proof of the main theorem.

Theorem 2.9. Let $(X, f, \mathcal{A}_{\bullet})$ let $g: Y \to \mathbb{P}(V^*)$ and $\mathcal{E} \in D(\mathcal{X} \times_{\mathbb{P}(V^*)} Y)$ be such that

- 1. $\Phi_{\mathcal{E}}$ is fully faithful and factors through \mathcal{C} , i.e. $\Phi_{\mathcal{E}} = D(Y) \xrightarrow{\phi_{\mathcal{E}}} \mathcal{C} \xrightarrow{\gamma} D(\mathcal{X})$ for some fully faithful $\phi_{\mathcal{E}}$;
- 2. $D(X) \xrightarrow{\pi^*} D(\mathcal{X}) \xrightarrow{\Phi_{\mathcal{E}}^*} D(Y)$ is fully faithful on \mathcal{A}_0 ;
- 3. $\mathcal{B}_0, \mathcal{B}_1(1), \ldots, \mathcal{B}_{j-1}(j-1)$ are semiorthogonal in D(Y), where $\mathcal{B}_k = \Phi_{\mathcal{E}}^*(\mathcal{C}_k)$.

Then Theorem 2.2 holds. In particular $(Y, g, \mathcal{B}_{\bullet})$ is a homological projective dual to $(X, f, \mathcal{A}_{\bullet})$.

There is also a relative version of Theorem 2.2. Consider a base scheme T and let $\mathcal{L} \subset V^* \otimes \mathcal{O}_T$ be a vector subbundle of rank r. If the dimension of V is N then the rank of $\mathcal{L}^{\perp} = \text{Ker}(V \otimes \mathcal{O}_T \to \mathcal{L}^*)$ is N - r. Define the family of linear sections $X_{\mathcal{L}} = X \times_{\mathbb{P}(V)} \mathbb{P}_T(\mathcal{L}^{\perp})$ and $Y_{\mathcal{L}} = Y \times_{\mathbb{P}(V^*)} \mathbb{P}_T(\mathcal{L})$. **Theorem 2.10.** If $(Y, g, \mathcal{B}_{\bullet})$ is an HPD of $(X, f, \mathcal{A}_{\bullet})$ then for any base scheme T and any $\mathcal{L} \subset V^* \otimes \mathcal{O}_T$ such that

$$\dim(X_{\mathcal{L}}) = \dim(X) + \dim(T) - r$$

$$\dim(Y_{\mathcal{L}}) = \dim(Y) + \dim(T) - N + r$$

there exists a triangulated category $\mathcal{C}_{\mathcal{L}}$ and semiorthogonal decompositions

$$D(X_{\mathcal{L}}) = \langle \mathcal{C}_{\mathcal{L}}, \mathcal{A}_r(r) \boxtimes D(T), \dots \mathcal{A}_{i-1}(i-1) \boxtimes D(T) \rangle,$$

$$D(Y_{\mathcal{L}}) = \langle \mathcal{C}_{\mathcal{L}}, \mathcal{B}_{N-r}(N-r) \boxtimes D(T), \dots, \mathcal{B}_{j-1}(j-1) \boxtimes D(T) \rangle.$$

Before sketching out the proof of the Theorem 2.10 we need to introduce the following auxilliary notion:

Definition 2.11. A functor $\Phi: \mathcal{T}_1 \to \mathcal{T}_2$ is right splitting if

- 1. Ker $\Phi = \{T \in \mathcal{T}_1 \mid \Phi(T) = 0\}$ is right admissible, i.e. $\mathcal{T}_1 = \langle (\text{Ker } \Phi)^{\perp}, \text{Ker } \Phi \rangle;$
- 2. $\Phi|_{(\operatorname{Ker} \Phi)^{\perp}}$ is fully faithful;
- 3. Im Φ is right admissible in \mathcal{T}_2 , i.e. $\mathcal{T}_2 = \langle (\operatorname{Im} \Phi)^{\perp}, \operatorname{Im} \Phi \rangle$.

NB: If a morphism is not fully faithful then, in general, its image is not a triangulated subcategory.

Lemma 2.12. The following are equivalent:

- 1. Φ is right splitting;
- 2. There exists a right adjoint $\Phi^!$ and the composition of the canonical morphism of functors $\eta: \operatorname{Id} \to \Phi^! \Phi$ with Φ gives an isomorphism $\Phi_{\eta}: \Phi \to \Phi \Phi^! \Phi$ (then also $\varepsilon_{\Phi}: \Phi \Phi^! \Phi \to \Phi$ is an isomorphism);
- 3. There exists a right adjoint $\Phi^!$, we have

$$\mathcal{T}_1 = \langle \operatorname{Im} \Phi^!, \operatorname{Ker} \Phi \rangle, \quad \mathcal{T}_2 = \langle \operatorname{Ker} \Phi^!, \operatorname{Im} \Phi \rangle$$

and Φ and $\Phi^!$ give quasi-inverse equivalences $\operatorname{Im} \Phi^! \simeq \operatorname{Im} \Phi$.

4. There exists \mathcal{T} and $\mathcal{T}_1 \stackrel{i}{\leftarrow} \mathcal{T} \stackrel{j}{\rightarrow} \mathcal{T}_2$ such that *i* is left admissible, *j* is right admissible and $\Phi = j \circ i^*$.

Sketch of the proof of Theorem 2.10. Any family of r-planes in V^* pulls back from the tautological bundle over the grassmanian $\mathbf{P}_r = \operatorname{Gr}(r, V^*)$. It is therefore enough to prove the theorem for the base scheme Tbeing \mathbf{P}_r and the family \mathcal{L} being the tautological bundle $\mathcal{L}_r \subset V^* \otimes \mathcal{O}_{\mathbf{P}_r}$. The case of general T and \mathcal{L} is then obtained by base change.

So define the universal linear sections

$$\mathcal{X}_r = (X \times \mathbf{P}_r) \times_{\mathbb{P}(V) \times \mathbf{P}_r} \mathbb{P}_{\mathbf{P}_r}(\mathcal{L}_r^{\perp}),$$
$$\mathcal{Y}_r = (Y \times \mathbf{P}_r) \times_{\mathbb{P}(V^*) \times \mathbf{P}_r} \mathbb{P}_{\mathbf{P}_r}(\mathcal{L}_r).$$

Explicitly, in terms of the maps $X \xrightarrow{f} \mathbb{P}(V)$ and $Y \xrightarrow{g} \mathbb{P}(V^*)$, we have

$$\begin{aligned} \mathcal{X}_r &= \{ (x, L, v) \in X \times \mathbf{P}_r \times \mathbb{P}(V) \mid v \in L^{\perp}, \, f(x) = v \} = \\ &= \{ (x, L) \in X \times \mathbf{P}_r \mid L \subset f(x)^{\perp} \} \end{aligned}$$

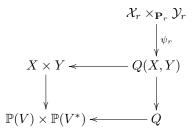
and

$$\mathcal{Y}_r = \{(y, L, v) \in Y \times \mathbf{P}_r \times \mathbb{P}(V^*) \mid v \in L, \ g(y) = v\} = \\ = \{(y, L) \in Y \times \mathbf{P}_r \mid L^{\perp} \subset g(y)^{\perp}\}.$$

From this description we see that $\mathcal{X}_r \to X$ is a fiber bundle with fibers $\operatorname{Gr}(r, N-1)$ and $\mathcal{Y}_r \to Y$ is a fiber bundle with fibers $\operatorname{Gr}(N-r, N-1)$. The varieties X and Y are smooth and hence so are \mathcal{X}_r and \mathcal{Y}_r . Finally, note that

$$\mathcal{X}_1 = \mathcal{X}, \ \mathcal{Y}_1 = Y$$
 and $\mathcal{X}_{n-1} = X, \ \mathcal{Y}_{n-1} = \mathcal{Y}_n$

Consider the commutative diagram



where $Q(X,Y) = \mathcal{X} \times_{\mathbb{P}(V^*)} Y$ and $Q = \{(v,H) \in \mathbb{P}(V) \times \mathbb{P}(V^*) \mid v \in H\}$ is the incidence quadric.

Let $\mathcal{E} \in D(Q(X,Y))$ be the object in the definition of the homological projective dual. Then $\mathcal{E}_r = \psi_r^* \phi_* \mathcal{E}$ is an object of $D(\mathcal{X}_r \times_{\mathbf{P}_r} \mathcal{Y}_r)$ and we write Φ_r for the corresponding functor $D(\mathcal{X}_r) \to D(\mathcal{Y}_r)$. We then show by induction on r that for all $r \geq 1$ the functor Φ_r satisfies the condition (2) of Lemma 2.12 and is therefore right splitting.

Since $\mathcal{Y}_1 = Y$ and $\mathcal{X}_1 = \mathcal{X}$, the base case of the induction (r = 1) follows from the definition of Y being a homological projective dual of X. To establish the inductive step we change the base to the flag variety $\mathbf{S}_r = \operatorname{Fl}(r-1,r;V^*)$. For

$$\widetilde{\mathcal{X}_{r+1}} = \mathcal{X}_{r+1} \times_{\mathbf{P}_{r+1}} \mathbf{S}_{r+2}, \qquad \qquad \widetilde{\mathcal{X}_{r}} = \mathcal{X}_{r} \times_{\mathbf{P}_{r}} \mathbf{S}_{r+1}, \\
\widetilde{\mathcal{Y}_{r}} = \mathcal{Y}_{r} \times_{\mathbf{P}_{r}} \mathbf{S}_{r+1}, \qquad \qquad \widetilde{\mathcal{Y}_{r+1}} = \mathcal{Y}_{r+1} \times_{\mathbf{P}_{r+1}} \mathbf{S}_{r+2}$$

we have it that $\widetilde{\mathcal{X}_{r+1}}$ is a divisor in $\widetilde{\mathcal{X}_r}$ and $\widetilde{\mathcal{Y}_r}$ is a divisor in $\widetilde{\mathcal{Y}_{r+1}}$. Using this presentation we can compare Φ_{r-1} , Φ_r , $\widetilde{\Phi_{r-1}}$ and $\widetilde{\Phi_r}$. This allows us to establish the inductive step: if Φ_{r-1} is right splitting, then so is Φ_r .

Once it is established that Φ_r is right splitting, it follows that

$$D(\mathcal{X}_r) = \left\langle \operatorname{Im} \Phi_r^!, \operatorname{Ker} \Phi_r \right\rangle,$$
$$D(\mathcal{Y}_r) = \left\langle \operatorname{Ker} \Phi_r^!, \operatorname{Im} \Phi_r \right\rangle$$

with $\operatorname{Im} \Phi_r^! \simeq \operatorname{Im} \Phi_r$. We therefore set $\mathcal{C}_{\mathcal{L}_r}$ to be $\operatorname{Im} \Phi_r$ and it remains to show that

$$\operatorname{Ker} \Phi_r^! = \left\langle \mathcal{B}_{N-r}(N-r) \boxtimes D(\mathbf{P}_r), \dots, \mathcal{B}_{j-1}(j-1) \boxtimes D(\mathbf{P}_r) \right\rangle, \tag{3}$$

$$\operatorname{Ker} \Phi_r = \left\langle \mathcal{A}_r(r) \boxtimes D(\mathbf{P}_r), \dots, \mathcal{A}_{i-1}(i-1) \boxtimes D(\mathbf{P}_r) \right\rangle.$$
(4)

One can easily check that $\mathcal{A}_k(k) \boxtimes D(\mathbf{P}_r) \subset \operatorname{Ker} \Phi_r$ for $k \geq r$ and that $\mathcal{B}_k(k) \boxtimes D(\mathbf{P}_r) \subset \operatorname{Ker} \Phi_r^l$ for $k \geq N - r$. The issue is to show that the semiorthogonal collections in the RHS of (3)-(4) are full, i.e. they generate the whole of $\operatorname{Ker} \Phi_r$ and $\operatorname{Ker} \Phi_r^l$. For $\operatorname{Ker} \Phi_r^l$ this is done by an ascending induction on r and for $\operatorname{Ker} \Phi_r - by$ a descending induction on r. In both cases, the inductive step uses the base change to $\mathbf{S}_r = \operatorname{Fl}(r-1,r;V^*)$ described above.

3 Examples

1). Take $X = \mathbb{P}(V)$ for a vector space V of dimension N, $f = \mathrm{id} : \mathbb{P}(V) \to \mathbb{P}(V)$ and Lefschetz decomposition

$$D(X) = \langle \mathcal{O}, \mathcal{O}(1), \dots, \mathcal{O}(N-1) \rangle$$

with $\mathcal{A}_0 = \langle \mathcal{O} \rangle$. Then $\mathcal{X} \subset X \times \mathbb{P}(V^*)$ is the incidence quadric and we have a semiorthogonal decomposition

$$D(\mathcal{X}) = \langle \mathcal{C}, \mathcal{O}(1) \boxtimes D(\mathbb{P}(V^*)), \dots, \mathcal{O}(N-1) \boxtimes D(\mathbb{P}(V^*)) \rangle$$

On the other hand, let $E \to \mathbb{P}(V^*)$ be the rank N-1 incidence vector bundle, whose fiber over $H \in \mathbb{P}(V^*)$ is $H \subset V$. Then $\mathcal{X} = \mathbb{P}_{\mathbb{P}(V^*)}(E)$ and hence, by a theorem of Orlov, $\mathcal{C} = 0$. Hence the homological projective dual to $(\mathbb{P}(V), \mathrm{Id}, \mathcal{A}_{\bullet})$ is $Y = \emptyset$.

The picture is (case N = 6):

1'). Consider the same situation as before but with the Lefschetz decomposition

$$D(X) = \langle \langle \mathcal{O}, \mathcal{O}(1) \rangle, \mathcal{O}(2), \dots, \mathcal{O}(N-1) \rangle$$

with $\mathcal{A}_0 = \langle \mathcal{O}, \mathcal{O}(1) \rangle$. Then

$$D(\mathcal{X}) = \langle \mathcal{C}, \mathcal{O}(2) \boxtimes D(\mathbb{P}(V^*)), \dots, \mathcal{O}(N-1) \boxtimes D(\mathbb{P}(V^*)) \rangle$$

and it follows from the previous example that $\mathcal{C} = \mathcal{O}(1) \boxtimes D(\mathbb{P}(V^*))$. Therefore \mathcal{C} is equivalent to $D(\mathbb{P}(V^*))$, so the homological projective dual is $Y = \mathbb{P}(V^*)$ with the Lefschetz decomposition defined by $\mathcal{B}_0 = \langle \mathcal{O}, \mathcal{O}(1) \rangle$.

The picture is (case N = 6):

1''). Consider the same situation as before but with the Lefschetz decomposition

 $D(X) = \left\langle \left\langle \mathcal{O}, \mathcal{O}(1), \mathcal{O}(2) \right\rangle, \mathcal{O}(3), \dots, \mathcal{O}(N-1) \right\rangle$

with $\mathcal{A}_0 = \langle \mathcal{O}, \mathcal{O}(1), \mathcal{O}(2) \rangle$. Then arguing as before we get $\mathcal{C} = \langle \mathcal{O}(1) \boxtimes D(\mathbb{P}(V^*)), \mathcal{O}(2) \boxtimes D(\mathbb{P}(V^*)) \rangle$ and $\mathcal{C}_H = \langle \mathcal{O}, \mathcal{O}(1) \rangle \subset D(\mathbb{P}^{N-2})$ is a "noncommutative projective space". There is no geometrical homological projective dual Y, but instead we can consider \mathcal{C} itself, a fibration in noncommutative projective spaces, to be the "noncommutative homological projective dual" of $(\mathbb{P}(V), \mathrm{Id}, \mathcal{A}_{\bullet})$.

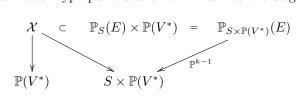
For the next few examples, we need to consider a version of the homological projective duality where we consider X relative to some base S. Namely, let X and Y be algebraic varieties over a base scheme S with X globally smooth over the base field k. Suppose we have projective maps $f: X \to S \times \mathbb{P}(V), g: Y \to S \times \mathbb{P}(V^*)$ and S-linear Lefschetz decompositions \mathcal{A}_{\bullet} and \mathcal{B}_{\bullet} of D(X)and D(Y), respectively. Then $\langle Y, g, \mathcal{B}_{\bullet} \rangle$ is a homological projective dual of $\langle X, f, \mathcal{A}_{\bullet} \rangle$ relative to S if there exists $\mathcal{E} \in D(Y \times_{S \times \mathbb{P}(V^*)} \mathcal{X})$ inducing a $S \times \mathbb{P}(V^*)$ -linear equivalence $\Phi_{\mathcal{E}} : D(Y) \to \mathcal{C}$ such that $\gamma^* \pi^*(\mathcal{A}_0) = \Phi_{\mathcal{E}}(\mathcal{B}_0).$

The Theorems 2.2 and 2.10 can be shown to hold in this relative setting. Note that we've only asked X to be smooth over the base field k. So the individual fibers of X over S might be singular. Indeed, we can then obtain by base change the Theorems 2.2 and 2.10 for these singular fibers.

2). Let S be a smooth, not necessarily projective variety. Let E be a rank k vector bundle on S and $X = \mathbb{P}_S(E)$. Assume that $f: X \hookrightarrow S \times \mathbb{P}(V)$ is linear on fibers, i.e. it is defined by some $\psi \colon E \hookrightarrow \mathcal{O}_S \otimes V$. Let $\phi \colon \mathcal{O}_S \otimes V^* \to E^*$ be the map dual to ψ . Note that $f^* \mathcal{O}_{S \times \mathbb{P}(V)}(1) = \mathcal{O}_{X/S}(1)$. By a theorem of Orlov X has a Lefschetz decomposition

$$D(X) = \left\langle D(S), D(S) \otimes \mathcal{O}_{X/S}(1), \dots, D(S) \otimes \mathcal{O}_{X/S}(k-1) \right\rangle$$

with $\mathcal{A}_0 = D(S)$. The universal hyperplane section of X fits into the diagram

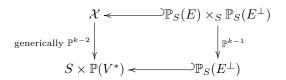


For any point $(s, H) \in S \times \mathbb{P}(V^*)$ the fiber $\mathcal{X}_{s,H}$ in $\mathbb{P}(E_s)$ consists of those lines of E_s which are mapped by $\psi_s \colon E_s \to V$ to the hyperplane $H \subset V$. In other words, it is precisely the vanishing set in $\mathbb{P}(E_s)$ of $\phi_s(H) \subset E_s^*$. Thus there are two possibilities: if $\psi_s(H)$ is a line in E_s^* , then $\mathcal{X}_{s,H}$ is the corresponding hyperplane in $\mathbb{P}(E_s)$. On the other hand, if $\phi_s(H) = 0$ then $\mathcal{X}_{s,H}$ is the whole of $\mathbb{P}(E_s).$

Let E^{\perp} be the kernel of ϕ . For any $s \in S$, restricting to s the short exact sequence

$$0 \to E^{\perp} \hookrightarrow \mathcal{O}_S \otimes V^* \xrightarrow{\phi} E^* \to 0$$

we deduce that $\phi_s(H) = 0 \Leftrightarrow H \subset E_s^{\perp}$. So the locus of the points in $S \times \mathbb{P}(V^*) \simeq \mathbb{P}_S(\mathcal{O}_S \otimes V^*)$ where $\mathcal{X}_{s,H}$ is the whole of $\mathbb{P}(E_s)$ is precisely $\mathbb{P}_S(E^{\perp})$. Thus, the picture is



In particular, for k = 2 the map $\mathcal{X} \to S \times \mathbb{P}(V^*)$ is simply the blow-up of $\mathbb{P}_S(E^{\perp})$. We have the semiorthogonal decomposition

$$D(\mathcal{X}) = \langle \mathcal{C}, D(S \times \mathbb{P}(V^*)) \otimes \mathcal{O}(1), \dots D(S \times \mathbb{P}(V^*)) \otimes \mathcal{O}(k-1) \rangle.$$

Away from $\mathbb{P}_{S}(E^{\perp})$, the variety \mathcal{X} is an \mathbb{P}^{k-2} -fiber bundle, so the semiorthogonal collection

$$\langle D(S \times \mathbb{P}(V^*)) \otimes \mathcal{O}(1), \dots D(S \times \mathbb{P}(V^*)) \otimes \mathcal{O}(k-1) \rangle$$

generates everything there. In other words, the restriction of \mathcal{C} away from $\mathbb{P}_S(E^{\perp})$ is 0. On the other hand, over $\mathbb{P}_S(E^{\perp})$ we've a \mathbb{P}^{k-1} -fiber bundle, so the restriction of \mathcal{C} to $\mathbb{P}_S(E^{\perp})$ is $D(\mathbb{P}_S(E^{\perp}))$. It can be shown that, indeed, $\mathcal{C} = D(\mathbb{P}_S(E^{\perp}))$ and $Y = \mathbb{P}_S(E^{\perp})$.

2'). Suppose we have a inclusion $f: S \hookrightarrow \mathbb{P}(V)$. Set the vector bundle E in the previous example to be $f^*\mathcal{O}_{\mathbb{P}(V^*)}(-1)$, then $X = \mathbb{P}_S(E) = S$. The Orlov's Lefschetz decomposition is the stupid Lefschetz decomposition $\mathcal{A}_0 = D(X)$. We've

$$E^{\perp} = \operatorname{Ker}(V^* \otimes \mathcal{O}_X \to \mathcal{O}_X(1)) = \Omega_{\mathbb{P}(V)}(1)|_X$$

and by the previous example $\mathcal{X} \to S \times \mathbb{P}(V^*)$ is 0 outside $\mathbb{P}_S(E^{\perp})$, while over $\mathbb{P}_S(E^{\perp})$ it is an isomorphism. So $\mathcal{X} = \mathbb{P}_S(E^{\perp})$ is a homological projective dual of X over itself.

2"). Given vector spaces A and B we can consider $X = \mathbb{P}(A) \times \mathbb{P}(B)$ over $S = \mathbb{P}(A)$. Write X as $\mathbb{P}_{\mathbb{P}(A)}(E)$ for $B \otimes \mathcal{O}_{\mathbb{P}(A)}(-1)$. Take, as usual, the Lefschetz decomposition with $\mathcal{A}_0 = D(\mathbb{P}(A))$ with respect to $\mathcal{O}_{X/\mathbb{P}(A)}(1)$.

The embedding

$$\psi \colon B \otimes \mathcal{O}_{\mathbb{P}(A)}(-1) \hookrightarrow B \otimes A \otimes \mathcal{O}_{\mathbb{P}(A)}$$

defines the embedding

$$f: \mathbb{P}(B) \times \mathbb{P}(A) \hookrightarrow \mathbb{P}(B \otimes A) \times \mathbb{P}(A).$$

We have

$$E^{\perp} = \operatorname{Ker}(B^* \otimes A^* \otimes \mathcal{O}_{\mathbb{P}(A)} \to B^* \otimes \mathcal{O}_{\mathbb{P}(A)}(1)) = B^* \otimes \Omega_{\mathbb{P}(A)}(1)$$

and so $Y = \mathbb{P}_{\mathbb{P}_A}(B^* \otimes \Omega_{\mathbb{P}(A)}(1))$ is a homological projective dual of $\langle X, f, \mathcal{A}_{\bullet} \rangle$.

If A is two dimensional then $\Omega_{\mathbb{P}(A)}(1)$ is a line bundle and $Y = \mathbb{P}(A) \times \mathbb{P}(B^*) \cong \mathbb{P}(A^*) \times \mathbb{P}(B^*)$.

3). For $X = \mathbb{P}(W)$ let f be $\nu_2 \colon \mathbb{P}(W) \to \mathbb{P}(S^2W)$, the second Veronese embedding, and take the Lefschetz decomposition with $\mathcal{A}_0 = \langle \mathcal{O}, \mathcal{O}(1) \rangle$. Then \mathcal{X} is the universal quadric which fits into the diagram

$$\begin{array}{cccc} X_Q & \subset & \mathcal{X} & \subset & \mathbb{P}(W) \times \mathbb{P}(S^2 W^*) \\ & & & & \downarrow \\ Q & \in & \mathbb{P}(S^2 W^*) \end{array}$$

We get the semiorthogonal decomposition

$$D(\mathcal{X}) = \langle \mathcal{C}, D(\mathbb{P}(S^2W^*)) \otimes \mathcal{O}(2), \dots, D(\mathbb{P}(S^2W^*)) \otimes \mathcal{O}(n-1) \rangle$$

By a result of Kapranov, if Q is a smooth quadric then $C_Q = \langle S \rangle$ or $C_Q = \langle S_+, S_- \rangle$. To understand what happens for a singular Q we recall the definition of a Clifford algebra. Given a quadratic form $q \in S^2 W^*$ we can define

$$\operatorname{Cl}(W,q) = T(W) / (w \otimes w' + w' \otimes w = 2 \langle w, w' \rangle 1),$$

where T(W) is the free tensor algebra on W and $\langle w, w' \rangle$ is the symmetric bilinear form $\frac{1}{2}(q(w+w')-q(w)-q(w'))$. Algebra $\operatorname{Cl}(W,q)$ is $\Lambda^{\bullet}W$ as a vector space but it has a different multiplication. Because the defining relation is not homogeneous Cl is not \mathbb{Z} -graded. However, it has $\mathbb{Z}/2$ grading, $\operatorname{Cl} = \operatorname{Cl}^0 \oplus \operatorname{Cl}^1$; Cl^0 is a subalgebra and Cl^1 is a Cl^0 -submodule with a bilinear map $\operatorname{Cl}^1 \otimes \operatorname{Cl}^1 \to \operatorname{Cl}^0$.

Then for any $Q \in \mathbb{P}(S^2W^*)$ we've $\mathcal{C}_Q \cong D(\operatorname{Cl}^0(W,q))$ for any quadratic form $q \in S^2W^*$ which defines Q. If the bilinear form associated to q is non-degenerate then $D(\operatorname{Cl}^0)$ is a matrix algebra or a product of two matrix algebras. It follows that $\mathcal{C} \cong D(\mathbb{P}(S^2W^*), \underline{\operatorname{Cl}^0})$, so the HPD of X is a noncommutative variety $Y = (\mathbb{P}(S^2W^*), \underline{\operatorname{Cl}^0})$ for a sheaf of Clifford algebras $\underline{\operatorname{Cl}^0}$.

3'). For the third Veronese embedding $\nu_3 \colon \mathbb{P}(W) \to \mathbb{P}(S^3W)$ the result depends on $n = \dim W$. For n = 3 we get the stupid decomposition. For n = 4 the dual is $Y \to \mathbb{P}(S^3W^*)$ with a generic fiber being a finite set of points. For n = 6 we get a fibration in noncommutative K3 surfaces.

For the final example, let $X = \operatorname{Gr}(2, W)$ and let $f: X \to \mathbb{P}(\Lambda^2 W)$ be the Plücker embedding. We assume that $\operatorname{char}(\mathbf{k}) = 0$ and denote by \mathcal{U} the tautological vector bundle on X.

Kapranov constructed a full exceptional collection on X with $\binom{n}{2}$ elements, $\{\Sigma^{\alpha}\mathcal{U}^*\}$, where α is Young diagram that fits into a rectangle 2 cells tall and n-2 cells wide. The order on the collection is the same as the inclusion order on Young diagrams.

Adding a column on the left to a diagram α is twists $\Sigma^{\alpha} \mathcal{U}^*$ by $\mathcal{O}(1)$. Hence the Kapranov's collection is

$$\langle \mathcal{O}, \mathcal{U}^*, \dots, S^{n-2}(\mathcal{U}^*), \mathcal{O}(1), \mathcal{U}^*(1), \dots, S^{n-3}(\mathcal{U}^*)(1), \dots, \mathcal{O}(n-2) \rangle.$$

So X has a Lefschetz decomposition:

$$\mathcal{A}_{0} = \left\langle \mathcal{O}, \mathcal{U}^{*}, \dots, S^{n-3}(\mathcal{U}^{*}), S^{n-2}(\mathcal{U}^{*}) \right\rangle,$$
$$\mathcal{A}_{1} = \left\langle \mathcal{O}, \mathcal{U}^{*}, \dots, S^{n-3}(\mathcal{U}^{*}) \right\rangle$$
$$\dots$$
$$\mathcal{A}_{n-2} = \left\langle \mathcal{O} \right\rangle$$

In particular, $|\mathcal{A}_0| = n - 1$, $|\mathcal{A}_1| = n - 2$, etc.

There is also a smaller Lefchetz decomposition with $\mathcal{A}_0 = \Big\langle \mathcal{O}, \mathcal{U}^*, \dots, S^{\left\lfloor \frac{n}{2} \right\rfloor - 1}(\mathcal{U}^*) \Big\rangle.$

If n = 2m + 1 this decomposition is rectangular with $\mathcal{A}_0 = \dots = \mathcal{A}_{2m} = \langle \mathcal{O}, \mathcal{U}^*, \dots, S^{m-1}\mathcal{U}^* \rangle$. If n = 2m then $\mathcal{A}_0 = \dots = \mathcal{A}_{m-1} = \langle \mathcal{O}, \mathcal{U}^*, \dots, S^{m-1}(\mathcal{U}^*) \rangle$ and $\mathcal{A}_m = \dots = \mathcal{A}_{2m-1} = \langle \mathcal{O}, \mathcal{U}^*, \dots, S^{m-1}(\mathcal{U}^*) \rangle$

 $\langle \mathcal{O}, \mathcal{U}^*, \dots, S^{m-2}(\mathcal{U}^*) \rangle$. For other $\operatorname{Gr}(k, W)$ similar Lefschetz decompositions were constructed by Fonarev.

The homological projective dual to $\operatorname{Gr}(2, W)$ must be a variety Y and $g: Y \to \mathbb{P}(\Lambda^2 W^*)$ such that $\operatorname{Crit}(g)$ is

$$X^{\vee} = \operatorname{Pf}(W^*) = \left\{ \lambda \in \mathbb{P}(\Lambda^2 W^*) \mid \operatorname{rk}(\lambda) \le 2\left(\left\lfloor \frac{n}{2} \right\rfloor - 1 \right) \right\}$$

For $n = \dim(W) \le 5$ the Pffafian variety $Pf(W^*)$ itself is the HPD of X. For n > 5, however, $Pf(W^*)$ becomes singular. If we define

$$\mathrm{Pf}_t(W^*) = \left\{ \lambda \in \mathbb{P}(\Lambda^2 W^*) \mid \mathrm{rk}(\lambda) \le 2t \right\}$$

then the singular locus of $\operatorname{Pf}(W^*)$ is $\operatorname{Pf}_{\lfloor \frac{n}{2} \rfloor - 2}(W^*)$.

Denote by $G = \operatorname{Gr}(2(\lfloor \frac{n}{2} \rfloor - 1), W^*)$ and by K the tautological bundle on G. We can construct a resolution

$$\mathbb{P}_{G}(\Lambda^{2}K) = \{(\lambda, P) \in \mathbb{P}(\Lambda^{2}W^{*}) \times G \mid \operatorname{Im}(\lambda) \subset P\}$$

$$\bigvee_{V} \operatorname{Pf}(W^{*}).$$

We check the rank of the Grothendieck group to see whether $\mathbb{P}_G(\Lambda^2 K)$ can be the HPD of X. The Lefschetz decomposition \mathcal{A}_{\bullet} of X consists of $\binom{n}{2}$ objects in a $\lfloor \frac{n}{2} \rfloor$ cells high and $\binom{n}{2} = \dim(\Lambda^2 W^*)$ cells wide rectangle. Therefore the expected rank of $K_0(Y)$ is $(\lfloor \frac{n}{2} \rfloor - 1)\binom{n}{2}$. Thus

- For n = 6 the expected rank of $K_0(Y)$ is 30.
- For n = 7 the expected rank of $K_0(Y)$ is 42.

On the other hand

$$\operatorname{rk}\left(K_0\left(\mathbb{P}_G(\Lambda^2 K)\right)\right) = \operatorname{rk}(K_0(G)) \times \operatorname{rk}\left(K_0(\operatorname{fiber})\right) = \operatorname{rk}(K_0(G)) \times \operatorname{rk}(\Lambda^2 K).$$

For n = 6, 7 the fiber is \mathbb{P}^5 . Thus, we see that

- For n = 6 the rank of $K_0(\mathbb{P}_G(\Lambda^2 K))$ is 90.
- For n = 7 the rank of $K_0\left(\mathbb{P}_G(\Lambda^2 K)\right)$ is 210.

We can construct a noncommutative resolution if there exists a relative Lefschetz decomposition of D over Z:

Lemma 3.1. Suppose there exists a Z-linear Lefschetz decomposition

$$D(D) = \langle \mathcal{D}_{j-1}(1-j), \dots, \mathcal{D}_1(-1), \mathcal{D}_0 \rangle$$

Then:

- 1. i_* is fully faithful on \mathcal{D}_k for $k \geq 1$,
- 2. $i_*(\mathcal{D}_{j-1}(1-j)), \ldots, i_*(\mathcal{D}_1(-1))$ are semi-orthogonal,
- 3. $D(\widetilde{Y}) = \langle i_*(\mathcal{D}_{j-1}(1-j)), \dots, i_*(\mathcal{D}_1(-1)), \mathcal{C} \rangle$ where $\mathcal{C} = \{F \in D(\widetilde{Y}) \mid i^*F \in \mathcal{D}_0\}.$
- 4. Suppose, additionally, that \mathcal{D}_0 is the Karoubi completion of $\langle i^*E \otimes p^*D(Z) \rangle$ where E is a vector bundle on \tilde{Y} . Suppose also that E is tilting over Y, i.e. $\mathbf{R}\pi_* \mathcal{E}nd(E)$ is a single sheaf of algebras on Y. Then

$$\mathcal{C} \cong D(Y, \pi_* \mathcal{E}nd(E)).$$

Let n = 7. Then Z = Gr(2,7) and D is a fiber bundle over Z with fiber Gr(2,5). There exists a rectangular Lefschetz decomposition of $D = F(2,4;W^*)$ with

$$\mathcal{D}_0 = \ldots = \mathcal{D}_4 = \langle D(Z), D(Z) \otimes S^* \rangle$$

where S is the quotient of 4-dimensional tautological vector bundle by the 2-dimensional tautological vector bundle on $F(2,4;W^*)$. Therefore

$$\operatorname{rk}(K_0(\mathcal{C})) = \operatorname{rk} K_0(\widetilde{Y}) - (\operatorname{rk} K_0(\operatorname{Gr}(2,5)) - 2) \times \operatorname{rk}(K_0(Z)) = 210 - 168 = 42$$

and $(Y, \pi^*(\operatorname{End}(\mathcal{O}_{\tilde{Y}} \oplus \mathcal{K}^*)))$ is the noncommutative homological projective dual to $\operatorname{Gr}(2,7)$. Here \mathcal{K} is a certain bundle on \tilde{Y} which restricts to S on D. Analogously for n = 6.

Conjecture 3.2. For n > 7 the homological projective dual of Gr(2, W) is an appropriate noncommutative resolution of the Pffafian variety $Pf(W^*)$.

NB:For n > 7 the exceptional fibre is much more complicated.

By the work of Hori Homological Projective Duality is related to non-linear sigma models. From string theory it follows that an appropriate noncommutative resolution of $Pf_k(W)$ should be homological projective dual of a noncommutative resolution of $Pf_{\lfloor \frac{n}{2} \rfloor - k}(W^*)$. These resolutions are known for $Pf_2(8) \leftrightarrow Pf_2(8)$ and $Pf_2(9) \leftrightarrow Pf_2(9)$. However, the proof of the duality is not known.

We have already seen that $\Sigma_1 = \mathbb{P}(W) \subset \mathbb{P}(S^2W)$ has the homological projective dual $Y = (\mathbb{P}(S^2W^*), \underline{Cl_0})$. We conjecture that the homological projective dual of $(\Sigma_k W, \underline{Cl_0})$ is $(\Sigma_{n+1-k}W^*, Cl_0)$.

Other know examples of homological projective duals are

- $OGr(5, 10) \leftrightarrow OGr(5, 10),$
- LGr(3,6) $\leftrightarrow Q_4 \subset \mathbb{P}^{13}$ a twisted noncommutative resolution of the quartic hypersurface,
- G_2 Gr \leftrightarrow a twisted noncommutative resolution of $Y \xrightarrow{2:1} \mathbb{P}^{13}$ ramified in a sextic,
- Gr(3,6) \leftrightarrow a twisted noncommutative resolution of $Y \xrightarrow{2:1} \mathbb{P}^{19}$.