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1 Preliminaries

Motivating Question: Assume that we know D(X), the bounded derived category of coherent sheaves
on a smooth projective variety X C P™. What can we say about D(Xpg) for Xy = X N H, a hyperplane
section of X7

First, we need to explain what we mean by claiming to “know” D(X).

Definition 1.1. Let T be a triangulated category. A semiorthogonal decomposition of T is a collection
To,---, Tn_1 of full triangulated subcategories such that

1. Hom(T;,T;) =0 fori>j,

2. for any F € T there exists a chain of morphisms 0 = F, — F,_1 — ... = Fy — Fy = F such that
Cone(Fiy1 — F;) € T;.

Remark 1.2. If 7 = D(X) for a smooth projective X then the categories 7; C D(X) are admissible,
i.e. there exist both left and right adjoints to the inclusion functor.

Remark 1.3. Because of the first condition the chain 0 = F,, — F,_1 — ... = | — Fy = F' is unique
and functorial.

The simplest triangulated category is D(k) - the derived category of k-vector spaces.

Definition 1.4. An object E € T is exceptional if Hom(E, E) = k and Ext'(E, E) = Hom(E, E[i]) = 0
fori#0.

If E is an exceptional object then the functor D(k) — 7 defined by V — V ® E is fully faithful.

Definition 1.5. A sequence Ey,...,E,_1 of exceptional objects is an exceptional collection if
Extk(Ei,Ej) =0 fori > j and all k. An exceptional collection is full if (Eo,...,En_1) = T, where
(Eo,...,En_1) denotes the smallest triangulated subcategory of T containing the objects Eo, ..., En_1.

If Fy,...,E,—1 is a full exceptional collection, then we have a semiorthogonal decomposition
T =(Eo,...,En_1) =(D(k),...,D(k)) with n components.

Example. If X =P, then for example D(X) = (O,...,0(n)).

Now, we can reformulate the question we have started with.

Motivating Question: Suppose we know a semiorthogonal decomposition for D(X). Can we
construct a semiorthogonal decomposition for D(Xp)?

We need some compatibility conditions between the semiorthogonal decomposition and the projective
embedding f: X — P".

Examples.

1. For id: X =P" < P™ and a hyperplane H C P" we have D(Xyg) = D(H) = (0,...,0(n —1)).

2. For the second Veronese embedding v5: X = P* — PN N = (";1) — 1 and the hyperplane
H c PV, the hyperplane section Xy = Q" ! is isomorphic to a quadric and we have
D(Xyg)={CH,O,...,0(n—2)).

*Lecture notes taken during the workshop “ Homological Projective Duality and Noncommutative Geometry” at
University of Warwick, 8-13 October 2012.



Remark 1.6. Abstractly the category Cgy does not depend on the place we put it in the
decomposition; we have

D(Q" ") =(Cu,0,...,0(n—2)) =(0,Ci,0(1),...,0(n—2)) = ... = (0,...,0(n —2),Cx ")
and
Cu=Ch=... 20
3. More generally, for d < n + 1 and the d-th Veronese embedding v4: X = P* — PV we have
D(Xpy)=(C4,0,...,0(n—d)),

4. For vg: X =P — PV and hyperplanes Hy, ..., H;, C PV such that dim Xpg, g, =dimX — k we
have D(Xp, .. m,) = <C;l[1mHk , O0,...,0(n —dk)).

Definition 1.7. A Lefschetz decomposition of D(X) with respect to Ox (1) is a chain of full triangulated
subcategories 0 C A;—1 C Aj—2 C ... C Ay C Ay such that D(X) = (Ag, A1(1),..., Ai—1(i — 1)) is a
semiorthogonal decomposition. Here,

A (k) .= {A(k) | A € A}
Examples.
1. For X =P™ and Ox(1) = Opn (1) we can consider the following Lefschetz decompositions:
e a Lefschetz decomposition of length i = n + 1 with A;_1 = ... = Ay = (O),
e a Lefschetz decomposition of length i = n with 49 = (0, 0(1)), A1 =... = A;_1 = (O(1))
and there are many other.

In particular, we see that a Lefschetz decomposition is an additional structure on an exceptional
collection.

2. For X =P" and Ox (1) = Opn(2)

o if n+1iseven then i =24l and A, = ... = Ay = (O, O(H)) is a Lefschetz decomposition,
e if n+1is odd then i = %2 and A;_; = (0), A;i_s = ... = Ay = (0,0(1)) is a Lefschetz
decomposition.

3. X = Q", an n-dimensional quadric, Ox (1) = Ogn (1)

e If n is odd, then D(X) = (S,0,...,0(n—1)) for a spinor bundle S. X has a Lefschetz
decomposition with i =n, Ag = (S,0), and A; =... = A;_1 = (O).

e If nis even, D(X) = (5+,5_,0,...,0(n—1)) for spinor bundles S; and S_. X has a
Lefschetz decomposition with i = n, A9 = (S4+,5-,0) and A = ... = A;_1 = (O).

e By mutation we also get that D(X) = (S4+,0,54+(1),0(1),...,0(n —1)). Then we get a
Lefschetz decomposition with i = n, Ag = A = (0,S;) and Ay = ... = A;_1 = (O).

4. For any X we have a stupid decomposition with ¢ =1 and Ay = D(X).

Proposition 1.8. Let D(X) = (Ao, A1(1),...,Ai_1(i — 1)) be a Lefschetz decomposition, H € T'(X, Ox (1))
and i: Xg = {H =0} — X. Note that Xy does not have to be smooth. Then

1. The left derived functor i*| 4, : Ax — D(Xg) is fully faithful for k > 1. (It is not fully faithful on
(A, Ap1+1(1)).)

2. i*(A1(1)), ..., 3" (Ai—1(i — 1)) are semiorthogonal in D(Xpr).
8. D(Xi) = (o, " (AL (1), i* (i1 (i — 1))
Proof. 1. Projection formula gives
Hom(i*F,i*G) = Hom(F,4,i*G) = Hom(F, G ® i,Ox,, ).
The short exact sequence on X

0—-0(-1) >0 —i.0x, =0



gives after tensoring with G
0—-G(-1) - G- G®i.0x, — 0.
We get a long exact sequence
... = Hom(F,G(-1)) = Hom(F,G) - Hom(F,G ® i.0x,) — ...

As F € Ay(k) and G(—1) € Ai(k —1) C Ap_1(k — 1), we know that Hom(F, G(—1)) = 0. Hence
we get an isomorphism Hom(F, G) = Hom(i*F,i*G).

2. For k>1>1, F € Ay(k) and G € A;(l) the same argument as above proves semiorthogonality.

3. We need to show that i*(A;(7)) is an admissible subcategory of D(X ). We know that A;(7) is an
admissible subcategory of D(X). It follows that 4;(¢) is saturated and any fully faithful embedding
is admissible.

O
Some properties of Lefschetz decomposition
Given a Lefschetz decomposition (Ag, A1(1),...,A;—1(i — 1)) we have:
o (Ag, Ao(1), ..., Ao(r)) = (Aoy A1 (1), ..., An(r)) = (Apgr (r + 1), ..., A1 (i — 1))

The last equality is by the semiorthogonality of the Lefschetz decomposition. The first equality
follows from it and from the obvious inclusions

<-A07 -Al(l)a v 7AT(T)> C <A0a -’40(1)7 s ,.A()(’I")> )
(Ao, Ao(1), .., Ag(r)) € (Appr (r+ 1), A (i — 1))
e A Lefschetz decomposition can be reconstructed from its Ag via the recurrent formula

A =1 Ao(=r) N A1
Question: Find nice sufficient conditions on Ay which would imply that A extends to a Lefschetz
decomposition. The subtlety here is in showing admissibility.
e There is a natural partial order on the set of Lefschetz decompositions, A, < A, if Ay C Aj.

Definition 1.9. A Lefschetz decomposition is minimal if it is minimal with respect to the above partial
order.

Question: Is it true that a minimal Lefschetz decomposition always exists?
Can a decreasing sequence of admissible subcategories be infinite?
If A, < A, then Ay C Af, and

(A1), Af (G = 1)) = FAGC T A = (A1), A (i - 1))
Question: How can one prove a Lefschetz decomposition to be minimal?
Definition 1.10. A Lefschetz decomposition is rectangular if Ag =41 =...=A;_1.
Examples:

e For X = P", an exceptional collection (O,...,O(n)) gives a rectangular Lefschetz decomposition
with respect to O(d) if and only if n + 1 is divisible by d.

e For X = Gr(2,5) and the Pliicker embedding i : X < P the Kapranov’s exceptional collection
gives a Lefschetz decomposition

D(X) = (Ao,...,A3(3))
with respect to i*O(1). Here

Ao = (O,U*, S*U*), SPU*)), A ={0,U*,S*(UY)), A =(0,U*), A;3=(0)

and U is the tautological vector bundle on Gr(2,5).



There is also another, rectangular Lefschetz decomposition with respect to the same line bundle
D(X) = (A, ..., A (4))

with 4y = ... = A}, = (O,U*). This Lefschetz decomposition gives by Proposition 1.8 eight
exceptional objects on a hyperplane section of X; if the section is generic these objects generate
D(Xg). Note that Kapranov’s decomposition gives only six exceptional objects on Xp.

Lemma 1.11. Assume that (Ao,...,A;—1(i — 1)) is a rectangular Lefschetz decomposition and
wx = Ox(—i). Then Aq is minimal.

Proof. Suppose, contrary to our claim, that A, < A,. Then A, C Ay and we have
(Af, AL (1), ... A (i — 1)) € (Ag, Ao(1),..., Ao(i — 1))

since both the LHS and the RHS are semiorthogonal decompositions and A}.(r) C A'o(r) C Ag(r).
Since the RHS is the whole of D(X), we conclude that A} is non-trivial. Let F' be a non-zero element
of A. We have by Serre duality

Hom® (F, F') ~ Hom® (F, F'(—i)[dim X]) = Hom® (F (i), F') [dim X] (1)

and the RHS of (1) is zero since Hom®(A%(7),.A) = 0 by the semiorthogonality of A,. But this is
impossible, as the LHS of (1) must contain the identity endomorphism of F. O

For an embedding f: X — P(V') and a Lefschetz decomposition with respect to Ox (1) = f*(Opv(1))
we get a category Cy in D(Xpg) for every hyperplane H € P(V*). Hence we get a family of categories
{Cu}rep(v+). To understand how these categories fit together we look at the universal hyperplane section
X ={(z,H) e X xP(V*)|x € Xy} of X. X fits into a diagram

X —— X xP(V*)

|

P(V*)
By the Kiineth formula we have
Homx yp(v+)(F1 X G, F» ¥ G) = Homx (F1, F2) @ Homp(y+)(G1, G2)
and, therefore, we obtain a Lefschetz decomposition
D(X xP(V*)) = (Ag R D(P(V*)),..., 4i—1(i — 1) X DP(V"))),

where
A X DPV*)) ={ARF|Ac A, F € DP(V*)} — D(X x P(V*)).

It is a Lefschetz decomposition with respect to Ox (1) K L for any line bundle L on P(V*).
X C X xP(V*) is a divisor whose structure sheaf Oy fits into a short exact sequence

0— Ox(—l) X OIP’(V*)(_l) — OXXIP(V*) — Ox — 0.
Arguing as in the proof of Prop. 1.8 we obtain a semiorthogonal decomposition
D(X)=(, A1 ()X DP(V*)),..., A1 — 1) K DP(V*"))).

The category C is the total family of {Cy} in the sense detailed below.

Base change for semiorthogonal decompositions

Definition 1.12. For X 2 S a subcategory T C D(X) is S-linear is for any F € DP*"(S) we have an
inclusion T @ p*F C T.

Remark 1.13. A pullback of F € D(S) can be unbounded; if p is flat then we can replace DP°™(S) by
D(S) in the definition above.



Definition 1.14. Morphisms p: X — S and f: S’ — S are Tor-independent if for any x € X and

s’ € S’ such that p(x) = s = f(s') the groups TOTSS’S (Ox.2,0g ) are zero.

Remark 1.15. If either p or f is flat then p and f are Tor-independent. If p and f are closed embeddings
than they are Tor-independent if and only if they are transversal.

Let X' = X x5 S’ and consider the diagram

x—1ox
st

Theorem 1.16. Let D(X) = (7o, ..., Tn—1) be an S-linear semiorthogonal decomposition. If p and f are
Tor-independent, there exists an S’-linear semiorthogonal decomposition D(X') = (T¢,..., T, _1) such

that f*(T)y € 7). Here, TP = T, "N DP*"!(X). In fact, T, is the completion of T,"*" & DPe"f(S") with
respect to certain homotopy colimits.

We have the following picture

Xy —s X X x P(V*)

|

Spec(k) ——=P(V*)

As the subcategories A; (i) X D(P(V*)) are D(P(V*))-linear, the category
C =+ (Ai(1) B D(B(V*)), A3(2) B D(B(V*)), ..., A1 (i — 1) B D(B(V*)))
is also D(P(V*))-linear. The map X — P(V*) is flat and hence by the base change Cy is the completion
of 1* (C””f ) with respect to certain homotopy colimits.
2 Main theorem

Let v: C = Tot{Cx } gep(v+) — D(X) be the natural inclusion and let v* : D(X) — C be its left adjoint.
Let 7 be the projective bundle map X & X

Definition 2.1. A Homological Projective Dual of
(X, f: X = P(V), A),

where Ag = A;—1 C ... C Ao is a Lefschetz decomposition of D(X) with respect to f*(O(1)), is
(Y,g9: Y = P(V"),B.),

where By = Bj_1 C ... C By is a Lefschetz decomposition of D(Y") with respect to g*(O(1)), such that there
exists £ € D(Y xp(y+) X) inducing a P(V*) -linear equivalence ®g: D(Y) — C and v*7*(Ao) = ®¢(Bo).

Theorem 2.2. Let (Y, g, Bs) be a Homological Projective Dual of (X, f, As). Choose L C V* of dimension
rand put X = X xpoy) P(L*), Yo =Y xpey«) P(L), where L+ = Ker(V — L*). If

dimXy = dimX —r, dimYy, = dimY — N +r (2)
(where N = dim'V') then

D(X1) = (CpL, Ap(r), ..., Ai_1(i — 1))
D(YL) = <CL, BN—’I‘(N — 7"), ey Bj—l(.j — 1)> .

Remark 2.3. If X; and Y7, do not have expected dimensions then we do not have Tor-independence
and have to consider a derived fiber product.



It is possible to show that
j=N—1—max{k|Ar = Ao}

Lefschetz decompositions 4, and B, fit into the following picture.

Bi By
| |
| |
| |

|
|
|
/S |
S
s 1
/ |
SN
7% |
SN S !
SN // |
SN 7 )
AO -Ar—l .
<.AT(’I’), . 7./42;1(2 - 1)>

Y

In particular, if the decomposition A, is rectangular then either Cp, = D(Xp) or C, = D(YL).
Example. Let X be Gr(2,W) C P(A2W) embedded via the Pliicker embedding and let dim W = 5.
Recall that D(X) has a rectangular Lefshetz decomposition

D(X) = <~A0a-’41(1)’ ce 7A4(4)>

with each A; = (O,U*) where U is the tautological bundle on X. We have N = 10 and the picture for
A, is

The homological projective dual of X is Y = Gr(2, W*) C P(A2W*). We have dim X = dimY = 6.

e For r = 1 the condition (2) forces Y, to be empty. Hence C;, = 0 and D(Xp) = (A1(1),...,A4(4))
is a full exceptional collection consisting of eight vector bundles.

e For r = 2 and general L we have again Y, = 0, C, = 0 and D(X1) = (A2(2),...,A4(4)) is a full
exceptional collection of six vector bundles.

e For r = 3 an general L we have Y, =), C;, = 0 and X, a Fano threefold of index two and degree
five, has a semiorthogonal decomposition D(X) = (A3(3), A4(4)).

e For r = 4 and general L the variety Y7, is a union of five points, C;, = D(Yz) and X has a
semiorthogonal decomposition D(X1) = (D(Yz), A4(4)). If Y7, is smooth, then D(Y7) is generated
by five exceptional objects and X, is a del Pezzo of degree 5.

e For r =5 and general L both X, and Y, are elliptic curves and D(X ) = D(YL).

e For r =6,...10 the situation is symmetric.

Lemma 2.4. Let (Y, g,B.) be a homological projective dual of (X, f, As). Then the set Crit(g) of critical
values of g is the classical projective dual of X

XV ={H e P(V*)| Xy is singular }.



Indeed, by definition there is a semiorthogonal decomposition
D(X)=(D(Y),A1(1) XK D(P(V*)), A2(2) X D(P(V")),..., A;—1(i — 1) X D(P(V*))).
By base change we get that
D(Xy)=DYu),A1(1),..., A4_1(i —1)).

Recall also that a projective scheme Z is smooth if and only if D(Z) is Ext-finite. The categories
A;(i) are subcategories of D(X) and therefore Ext-finite. Using this fact and the above semiorthogonal
decomposition one can show that X is smooth if and only if Y is . Then for a hyperplane H € P(V*)
we've

H € Crit(g) < Yg is not smooth < X is not smooth < H € X".

Remark 2.5. If (Y, g, Be) is an HPD of (X, f, As) then Y is smooth (uses the fact that X is smooth).

For a Lefschetz decomposition
D(X) = <~A0a-/41(1), S ,Ai_l(i — 1)>

denote by aj the category A,j_l N Ag, called the k-th primitive category of the Lefschetz decomposition
of D(X). Then Ay = (ax, Ag+1) = {(ag,...,a;—1). In particular

Ao = (ag,...,a;-1) .

Denote by of : D(X) — Ay the left adjoint to the inclusion functor. Then of(Ax(k)) = 0 and
af(ag(l)) =0 for | < k.

Lemma 2.6. of(ax(k+ 1)) = Ao is fully faithful and

Ao = (ag(ao(1)), ag(ar(2)), - .. ag(ai-1(4)))) -

The decomposition in the above lemma is the dual primitive decomposition of Ayg.
Recall the composition of functors D(X) ~— D(X) - C.

Lemma 2.7. The composition v* o™ is fully faithful on Ay and we denote its image by Co = v*7*(Ap).

The category Cy C C is admissible because Ay is saturated. For any k& > 0 define category Ci as
v ({eg(ao(1)), ag(a(2)), ..., ag(ay—k—2(N — k = 1))))  Co.

Since C is P(V*)-linear the map p : X — P(V*) allows to define the endofunctor [—](1) on the category

Lemma 2.8. C, is a Lefshetz decomposition of C with respect to the endofunctor [—](1) defined above.

This is the dual decomposition of C 2 D(Y). These categories will be used in the proof of the main
theorem.

Theorem 2.9. Let (X, f, A,) let g:Y — P(V*) and £ € D(X Xpy+) Y) be such that

1. ®¢ is fully faithful and factors through C, i.e. &g = D(Y) LN AN D(X) for some fully faithful
Pe;

2. D(X) AN D(X) 2, D(Y) is fully faithful on Ay;
3. Bo,Bi(1),...,B;-1(j — 1) are semiorthogonal in D(Y'), where By, = ®%(Cx).
Then Theorem 2.2 holds. In particular (Y, g,Be) is a homological projective dual to (X, f, As).

There is also a relative version of Theorem 2.2. Consider a base scheme T and let £L C V* ® Or be
a vector subbundle of rank 7. If the dimension of V is N then the rank of £+ = Ker(V ® Or — L£*) is
N —r. Define the family of linear sections Xz = X xp) Pr(£4) and Yz =Y Xpy«) Pr(L).



Theorem 2.10. If (Y, g,B,) is an HPD of (X, f, As) then for any base scheme T and any L C V* @ O
such that
dim(X,) = dim(X) + dim(T) — r

dim(Yz) = dim(Y) + dim(T) = N +r
there exists a triangulated category Cp and semiorthogonal decompositions
D(X.)={(Cr, A-(r) X D(T),... Ai—1(i — 1) X D(T)),
DY) = (Cc; Bn—(N =) R D(T),...,Bj—1(j — 1) WD(T))..

Before sketching out the proof of the Theorem 2.10 we need to introduce the following auxilliary
notion:

Definition 2.11. A functor ®: 71 — T3 is right splitting if

1. Ker® = {T € Ty | ®(T) = 0} is right admissible, i.e. T = ((Ker ®)*, Ker ®);

2. ®|kerw)r 18 fully faithful;

3. Im ® is right admissible in Tz, i.e. To = <(Im @)+, Im <I>>.

NB: If a morphism is not fully faithful then, in general, its image is not a triangulated subcategory.
Lemma 2.12. The following are equivalent:

1. ® is right splitting;

2. There exists a right adjoint ® and the composition of the canonical morphism of functors
n: Id — ®'® with ® gives an isomorphism e, d — OD'D (then also e : PP'® — & is an
isomorphism);

3. There exists a right adjoint ®', we have
Ti = (Im @', Ker @), 7= (Ker®',Im®)
and ® and ®' give quasi-inverse equivalences Im ®' ~ Im ®.

4. There exists T and Ty LT EN T2 such that i is left admissible, j is right admissible and ® = joi*.

Sketch of the proof of Theorem 2.10. Any family of r-planes in V* pulls back from the tautological bundle
over the grassmanian P, = Gr(r, V*). It is therefore enough to prove the theorem for the base scheme T'
being P, and the family £ being the tautological bundle £, C V* @ Op,. The case of general T' and £
is then obtained by base change.

So define the universal linear sections

X, = (X x P,)) xpvyxp, Pp, (L),
Ve = (Y x P;) Xpev+)xp, Pp, (L)
Explicitly, in terms of the maps X ER P(V) and Y £ P(V*), we have

X, ={(z,L,0) e X x P, xP(V)|veL* flz) =v} =
={(z,L) e X xP,. | LC f(z)*}

and

) €Y XP. xP(V*)|vel,gly) =v}=

y'r:{(
={(y,L) €Y x P, | L* C g(y)*}.

(
From this description we see that X, — X is a fiber bundle with fibers Gr(r, N — 1) and J, — Y is a

fiber bundle with fibers Gr(N — r, N — 1). The varieties X and Y are smooth and hence so are X, and
Y. Finally, note that

y, L
y, L

X=X, V1=Y and &, 1=X, V1=



Consider the commutative diagram

XT XP, yr

iw,‘

XxY~—Q(X,Y)

| |

PV) xP(V*) =——0Q

where Q(X,Y) = X xpy-) Y and Q = {(v, H) € P(V) x P(V*)|v € H} is the incidence quadric.

Let £ € D(Q(X,Y)) be the object in the definition of the homological projective dual. Then
Er = P ¢.€ is an object of D(X, xp, V,) and we write ®,. for the corresponding functor D(X,) — D(Y,).
We then show by induction on 7 that for all » > 1 the functor ®, satisfies the condition (2) of Lemma
2.12 and is therefore right splitting.

Since Y1 =Y and X} = X, the base case of the induction (r = 1) follows from the definition of Y’
being a homological projective dual of X. To establish the inductive step we change the base to the flag
variety S, = Fl(r — 1,7;V*). For

—~—

Xoy1 = X1 Xp,., Srpa, X, =X, Xp, Sr41,

yr - y’r' XPT S7-+1, y7'+1 - yr—i—l ><P/y-+1 S7'+2

we have it that 2/(::1 is a divisor in 5(\; and 577 is a divisor in )/)T\_; Using this presentation we can
compare ®,_1, ®,., 5?: and :}: This allows us to establish the inductive step: if ®,._; is right splitting,
then so is ®,..

Once it is established that ®,. is right splitting, it follows that

D(X,) = (Im @), Ker ®,.),

D(Y,) = (Ker ®,,Im ®,)

with Im <I>!,, ~ Im ®,. We therefore set C, to be Im @, and it remains to show that

Ker®. = (Bx_(N —r)R D(P,),...,B;_1(j — 1) X D(P,)), (3)
Ker®, = (A.(r) R D(P,),..., Ai_1(i — 1)K D(P,)). (4)

One can easily check that Ay (k) X D(P,.) C Ker ®, for k > r and that By.(k) X D(P,) C Ker ®.. for
k > N —r. The issue is to show that the semiorthogonal collections in the RHS of (3)-(4) are full, i.e.
they generate the whole of Ker ®, and Ker ®.. For Ker @ this is done by an ascending induction on

and for Ker ®,, — by a descending induction on r. In both cases, the inductive step uses the base change
to S, = Fl(r — 1,7; V*) described above. O

3 Examples

1). Take X = P(V) for a vector space V of dimension N, f = id : P(V) — P(V) and Lefschetz
decomposition
D(X) =(0,0(1),...,0(N — 1))

with Ag = (O). Then X C X x P(V*) is the incidence quadric and we have a semiorthogonal
decomposition
D(X)=(C,0(1)®DP(V")),...,O(N —1)X D(P(V*))).

On the other hand, let E — P(V*) be the rank N — 1 incidence vector bundle, whose fiber over
HeP(V*)is HCV. Then X = Pp(y+)(E) and hence, by a theorem of Orlov, C = 0. Hence the
homological projective dual to (P(V),1d, As) is Y = 0.

The picture is (case N = 6):




1).

1//).

Consider the same situation as before but with the Lefschetz decomposition
D(X) = ({0,0(1)),0(2),...,0(N - 1))
with Ag = (O, O(1)). Then
D(Xx) = <C, O(2)®D(P(V*)),...,O(N —1) K D(P(V")))

and it follows from the previous example that C = O(1) X D(P(V*). Therefore C is equivalent
to D(P(V*)), so the homological projective dual is Y = P(V*) with the Lefschetz decomposition
defined by By = (0, O(1)).

The picture is (case N = 6):

Consider the same situation as before but with the Lefschetz decomposition

with Ag = (O, O(1),0(2)). Then arguing as before we get C = (O(1) ¥ D(P(V*)), O(2) K D(P(V*)))
and Cy = (0,0(1)) € D(PY~2) is a “noncommutative projective space”. There is no geometrical
homological projective dual Y, but instead we can consider C itself, a fibration in noncommutative
projective spaces, to be the “noncommutative homological projective dual” of (P(V),1d, A,).

For the next few examples, we need to consider a version of the homological projective duality
where we consider X relative to some base S. Namely, let X and Y be algebraic varieties over
a base scheme S with X globally smooth over the base field k. Suppose we have projective maps
f: X =5 SxPV), g: Y - S xP(V*) and S-linear Lefschetz decompositions A, and B, of D(X)
and D(Y), respectively. Then (Y, g,Bs) is a homological projective dual of (X, f, Ae) relative to S if
there exists £ € D(Y X gyp(v+) &) inducing a S x P(V*)-linear equivalence ®¢ : D(Y) — C such that
v (Ag) = Pe(Bo).

The Theorems 2.2 and 2.10 can be shown to hold in this relative setting. Note that we’ve only asked
X to be smooth over the base field k. So the individual fibers of X over S might be singular. Indeed, we
can then obtain by base change the Theorems 2.2 and 2.10 for these singular fibers.

2). Let S be a smooth, not necessarily projective variety. Let E be a rank k vector bundle on S

and X = Pg(E). Assume that f: X — S x P(V) is linear on fibers, i.e. it is defined by some
Y: E—= Os®V. Let ¢: Os®@V* — E* be the map dual to 1. Note that f*Ogypv)(1) = Ox/s(1).

By a theorem of Orlov X has a Lefschetz decomposition
D(X) = (D(S),D(S) ® Ox/s(1),...,D(S) ® Oxs(k — 1))

with Ayg = D(S). The universal hyperplane section of X fits into the diagram

X ¢ Pg(E)xP(V*) = Pgupw=)(E)
i \ -
P(V*) S x P(V*)

For any point (s, H) € S x P(V*) the fiber X g in P(E;) consists of those lines of E, which are
mapped by s: Es — V to the hyperplane H C V. In other words, it is precisely the vanishing
set in P(Ey) of ¢s(H) C E. Thus there are two possibities: if ¢4(H) is a line in E7, then X; g is
the corresponding hyperplane in P(E;). On the other hand, if ¢s(H) = 0 then X  is the whole of
P(E;).

Let E* be the kernel of ¢. For any s € S, restricting to s the short exact sequence

0= Bt s 050V S B 50
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2.

2//).

we deduce that ¢s(H) = 0 < H C EL. So the locus of the points in S x P(V*) ~ Pg(Og ® V*)
where X; p is the whole of P(E;) is precisely Pg(E+). Thus, the picture is

X <—)]P3(E) Xs Ps(EL)

generically Pk2i J(]P”“_1

S x P(V*) <~ OPg(EL)

In particular, for k = 2 the map X — S x P(V*) is simply the blow-up of Pg(E~).

We have the semiorthogonal decomposition
D(X)=(C,D(SxP(V*)) ® O(1),...D(S x P(V*)) ® O(k — 1)).
Away from Pg(E"), the variety X is an P¥~2-fiber bundle, so the semiorthogonal collection
(D(SxP(V*))®0(1),...D(S x P(V*)) @ O(k — 1))

generates everything there. In other words, the restriction of C away from Pg(E~L) is 0. On the
other hand, over Pg(E") we’ve a P*~1-fiber bundle, so the restriction of C to Pg(E~) is D(Ps(E™)).
It can be shown that, indeed, C = D(Pg(E*)) and Y = Pg(E").

Suppose we have a inclusion f: S < P(V). Set the vector bundle E in the previous example to be
[*Opy+y(—1), then X = Pg(E) = S. The Orlov’s Lefschetz decomposition is the stupid Lefschetz
decomposition Ay = D(X). We've

Et+ = Ker(V*® Ox — Ox (1)) = Qpvy(1)|x

and by the previous example X — S x P(V*) is 0 outside Pg(E"L), while over Pg(E"L) it is an
isomorphism. So X = Pg(E") is a homological projective dual of X over itself.

Given vector spaces A and B we can consider X = P(A) x P(B) over S = P(A). Write X as
Ppeay(E) for B® Op(ay(—1). Take, as usual, the Lefschetz decomposition with Aq = D(P(A)) with
respect to Ox/p(a)(1).
The embedding

(F B®OP(A)(—1) — B@A@OP(A)

defines the embedding
f:P(B)xP(A) - P(B® A) x P(A).

We have
E' = Ker(B* ® A" ® Opa)y = B* ® Op(a)(1)) = B* ® Qp(a(1)

and so Y = Pp, (B* ® Qp4)(1)) is a homological projective dual of (X, f, A,).
If A is two dimensional then Qp(4)(1) is a line bundle and Y = P(A) x P(B*) = P(A*) x P(B*).

. For X = P(W) let f be vo: P(W) — P(S?W), the second Veronese embedding, and take the

Lefschetz decomposition with Ag = (O, O(1)). Then X is the universal quadric which fits into the
diagram
Xg c X c P(W) x P(S?W*)

Q e P(S*W)
We get the semiorthogonal decomposition
D(X) = (C, D(P(S*W*)) ® O(2),..., D(B(S*W*)) ® O(n — 1))

By a result of Kapranov, if Q) is a smooth quadric then Cq = (S) or Cg = (5S4, S—). To understand
what happens for a singular @ we recall the definition of a Clifford algebra. Given a quadratic form
q € S?2W* we can define

Cl(W,q) =TW)/(w@w +w @w=2(w,w)1),
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where T(W) is the free tensor algebra on W and (w,w’) is the symmetric bilinear form
1 (g(w +w') — g(w) — q(w')). Algebra CL(W,q) is A®W as a vector space but it has a different
multiplication. Because the defining relation is not homogeneous Cl is not Z -graded. However, it

has Z/2 grading, Cl = Cl°@ C1'; C1° is a subalgebra and CI' is a Cl%-submodule with a bilinear
map Cl' ® CI' — CI°.

Then for any Q € P(S?W*) we've Co = D(CI°(W,q) for any quadratic form ¢ € S?W* which
defines @. If the bilinear form associated to ¢ is non-degenerate then D(Clo) is a matrix algebra
or a product of two matrix algebras. It follows that C = D(P(S?W*),C1%), so the HPD of X is a
noncommutative variety ¥ = (P(S2W*), C1°) for a sheaf of Clifford algebras C1°.

3'). For the third Veronese embedding vs: P(W) — P(S3W) the result depends on n = dim W. For
n = 3 we get the stupid decomposition. For n = 4 the dual is Y — P(S3W*) with a generic fiber
being a finite set of points. For n = 6 we get a fibration in noncommutative K3 surfaces.

For the final example, let X = Gr(2, W) and let f: X — P(A2W) be the Pliicker embedding. We
assume that char(k) = 0 and denote by U the tautological vector bundle on X.

Kapranov constructed a full exceptional collection on X with () elements, {$°U*}, where a is Young

diagram that fits into a rectangle 2 cells tall and n — 2 cells wide. The order on the collection is the same
as the inclusion order on Young diagrams.

Adding a column on the left to a diagram « is twists X*U* by O(1). Hence the Kapranov’s collection
is

(o.u*,..., 8" 2U*),0(1),U* (1), ..., S" U (1),...,0(n — 2)).

So X has a Lefschetz decomposition:

Ao ={O,u*, ..., S"3U*), 8" 2 (UY)),
Ay ={(O.U*,...,S" 3 U))

o ':”<@>

In particular, |[Ao| =n — 1, |A1| =n — 2, etc.

There is also a smaller Lefchetz decomposition with Ay = <(9,Z/{*, e SLgJ*l(U*)>.

If n = 2m + 1 this decomposition is rectangular with 4y = ... = Ay, = <(9,U*, ceey Smflu*>.

If n = 2m then Ay = ... = A,,_1 = <(9,Z/I*7 .. .,Smfl(b{*» and A, = ... = Aoy =
(o,u*,....S™2(U")).

For other Gr(k, W) similar Lefschetz decompositions were constructed by Fonarev.

The homological projective dual to Gr(2, W) must be a variety Y and g: Y — P(A2W*) such that
Crit(g) is

XV = PH(W*) = {)\ e P(A2W™) | tk()) < 2(@ - 1)} .

For n = dim(W) < 5 the Pffafian variety Pf(W*) itself is the HPD of X. For n > 5, however, Pf(1W*)
becomes singular. If we define

Pf,(W*) = {X € P(A*W™) | tk(\) < 2t}

then the singular locus of Pf(WW*) is PfL%J (™).

Denote by G = Gr(2(|2] — 1), W*) and by K the tautological bundle on G. We can construct a
resolution
Po(A?K) = {(A\P)eP(A*W*) x G| Im(\) C P}

i
PE(W™).

We check the rank of the Grothendieck group to see whether Pg(A%2K) can be the HPD of X. The
Lefschetz decomposition A, of X consists of (g) objects in a L%J cells high and (g) = dim(A2W*) cells
wide rectangle. Therefore the expected rank of Ko(Y) is (| %] —1)(5). Thus

e For n = 6 the expected rank of Ky(Y") is 30.

e For n = 7 the expected rank of Ky(Y) is 42.
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On the other hand
rk (Ko (Pg(AK))) = rk(Ko(G)) x tk (Ko (fiber)) = rk(Ko(G)) x tk(A’K).
For n = 6,7 the fiber is P5. Thus, we see that
e For n = 6 the rank of K (Pg(A%K)) is 90.
e For n = 7 the rank of Ky (Pg(A%K)) is 210.

We can construct a noncommutative resolution if there exists a relative Lefschetz decomposition of

D over Z:
Lemma 3.1. Suppose there exists a Z-linear Lefschetz decomposition
D(D) = (Dj_1(1 —j),...,D1(—1),Dy)
Then:
1. iy is fully faithful on Dy for k > 1,

2. i(Dj—1(1 = 4)),...,i(D1(=1)) are semi-orthogonal,

3. D(f/) = (i.(Dj—1(1 — 7)), ... ,1(D1(—1)),C) where C = {F € D(Y) | i*F € Dy}.

4. Suppose, additionally, that Dy is the Karoubi completion of (i*E @ p*D(Z)) where E is a vector
bundle on' Y. Suppose also that E is tilting over Y, i.e. Rm.End(E) is a single sheaf of algebras
onY. Then

C2D(Y,m.End(E)).

Let n = 7. Then Z = Gr(2,7) and D is a fiber bundle over Z with fiber Gr(2,5). There exists a
rectangular Lefschetz decomposition of D = F(2,4; W*) with

Do=...=Ds=(D(Z),D(Z) & S*)

where S is the quotient of 4-dimensional tautological vector bundle by the 2-dimensional tautological
vector bundle on F(2,4; W*). Therefore

rk (Ko(C)) = rk Ko(Y) — (tk Ko(Gr(2,5)) — 2) x 1k (Ko(Z)) = 210 — 168 = 42

and (Y, 7*(End(Oy @ K*))) is the noncommutative homological projective dual to Gr(2,7). Here K is a
certain bundle on Y which restricts to S on D. Analogously for n = 6.

Conjecture 3.2. For n > 7 the homological projective dual of Gr(2,W) is an appropriate
noncommutative resolution of the Pffafian variety PE(W™).

NB:For n > 7 the exceptional fibre is much more complicated.

By the work of Hori Homological Projective Duality is related to non-linear sigma models. From
string theory it follows that an appropriate noncommutative resolution of Pfy (W) should be homological
projective dual of a noncommutative resolution of PfL% J—k(W*) These resolutions are known for

Pf5(8) +» Pf2(8) and Pf3(9) <» Pf2(9). However, the proof of the duality is not known.

We have already seen that %; = P(W) <C P(S?W) has the homological projective
dual Y = (P(S?W*),Cly). We conjecture that the homological projective dual of (X,W,Cly) is
(Zn-‘rl—kW*a%)'

Other know examples of homological projective duals are

e 0Gr(5,10) «+ OGr(5,10),

LGr(3,6) + Q4 C P13 — a twisted noncommutative resolution of the quartic hypersurface,

. . . 2:1 . . .
G2Gr + a twisted noncommutative resolution of ¥ == P'3 ramified in a sextic,

o Gr(3,6) ¢ a twisted noncommutative resolution of ¥ 25 P19,
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