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1 Preliminaries

Motivating Question: Assume that we know D(X), the bounded derived category of coherent sheaves
on a smooth projective variety X ⊂ Pn. What can we say about D(XH) for XH = X ∩H, a hyperplane
section of X?

First, we need to explain what we mean by claiming to “know” D(X).

Definition 1.1. Let T be a triangulated category. A semiorthogonal decomposition of T is a collection
T0, . . . , Tn−1 of full triangulated subcategories such that

1. Hom(Ti, Tj) = 0 for i > j,

2. for any F ∈ T there exists a chain of morphisms 0 = Fn → Fn−1 → . . .→ F1 → F0 = F such that
Cone(Fi+1 → Fi) ∈ Ti.

Remark 1.2. If T = D(X) for a smooth projective X then the categories Ti ⊂ D(X) are admissible,
i.e. there exist both left and right adjoints to the inclusion functor.

Remark 1.3. Because of the first condition the chain 0 = Fn → Fn−1 → . . .→ F1 → F0 = F is unique
and functorial.

The simplest triangulated category is D(k) - the derived category of k-vector spaces.

Definition 1.4. An object E ∈ T is exceptional if Hom(E,E) = k and Exti(E,E) = Hom(E,E[i]) = 0
for i 6= 0.

If E is an exceptional object then the functor D(k)→ T defined by V 7→ V ⊗ E is fully faithful.

Definition 1.5. A sequence E0, . . . , En−1 of exceptional objects is an exceptional collection if
Extk(Ei, Ej) = 0 for i > j and all k. An exceptional collection is full if 〈E0, . . . , En−1〉 = T , where
〈E0, . . . , En−1〉 denotes the smallest triangulated subcategory of T containing the objects E0, . . . , En−1.

If E0, . . . , En−1 is a full exceptional collection, then we have a semiorthogonal decomposition
T = 〈E0, . . . , En−1〉 = 〈D(k), . . . , D(k)〉 with n components.

Example. If X = Pn, then for example D(X) = 〈O, . . . ,O(n)〉.
Now, we can reformulate the question we have started with.
Motivating Question: Suppose we know a semiorthogonal decomposition for D(X). Can we

construct a semiorthogonal decomposition for D(XH)?
We need some compatibility conditions between the semiorthogonal decomposition and the projective

embedding f : X ↪→ Pn.
Examples.

1. For id : X = Pn ↪→ Pn and a hyperplane H ⊂ Pn we have D(XH) = D(H) = 〈O, . . . ,O(n− 1)〉.

2. For the second Veronese embedding ν2 : X = Pn ↪→ PN , N =
(
n+1

2

)
− 1 and the hyperplane

H ⊂ PN , the hyperplane section XH
∼= Qn−1 is isomorphic to a quadric and we have

D(XH) = 〈CH ,O, . . . ,O(n− 2)〉.
∗Lecture notes taken during the workshop “ Homological Projective Duality and Noncommutative Geometry” at

University of Warwick, 8-13 October 2012.
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Remark 1.6. Abstractly the category CH does not depend on the place we put it in the
decomposition; we have

D(Qn−1) = 〈CH ,O, . . . ,O(n− 2)〉 =
〈
O, C1

H ,O(1), . . . ,O(n− 2)
〉

= . . . =
〈
O, . . . ,O(n− 2), Cn−1

H

〉
and

CH ∼= C1
H
∼= . . . ∼= Cn−1

H .

3. More generally, for d ≤ n + 1 and the d-th Veronese embedding νd : X = Pn ↪→ PN we have
D(XH) =

〈
CdH ,O, . . . ,O(n− d)

〉
,

4. For νd : X = Pn ↪→ PN and hyperplanes H1, . . . ,Hk ⊂ PN such that dimXH1...Hk
= dimX − k we

have D(XH1...Hk
) =

〈
CdH1...Hk

, O, . . . ,O(n− dk)〉.

Definition 1.7. A Lefschetz decomposition of D(X) with respect to OX(1) is a chain of full triangulated
subcategories 0 ⊂ Ai−1 ⊂ Ai−2 ⊂ . . . ⊂ A1 ⊂ A0 such that D(X) = 〈A0,A1(1), . . . ,Ai−1(i− 1)〉 is a
semiorthogonal decomposition. Here,

Ak(k) := {A(k) |A ∈ Ak}.

Examples.

1. For X = Pn and OX(1) = OPn(1) we can consider the following Lefschetz decompositions:

� a Lefschetz decomposition of length i = n+ 1 with Ai−1 = . . . = A0 = 〈O〉,
� a Lefschetz decomposition of length i = n with A0 = 〈O,O(1)〉, A1 = . . . = Ai−1 = 〈O(1)〉

and there are many other.

In particular, we see that a Lefschetz decomposition is an additional structure on an exceptional
collection.

2. For X = Pn and OX(1) = OPn(2)

� if n+ 1 is even then i = n+1
2 and Ai−1 = . . . = A0 = 〈O,O(H)〉 is a Lefschetz decomposition,

� if n + 1 is odd then i = n+2
2 and Ai−1 = 〈O〉, Ai−2 = . . . = A0 = 〈O,O(1)〉 is a Lefschetz

decomposition.

3. X = Qn, an n-dimensional quadric, OX(1) = OQn(1)

� If n is odd, then D(X) = 〈S,O, . . . ,O(n− 1)〉 for a spinor bundle S. X has a Lefschetz
decomposition with i = n, A0 = 〈S,O〉, and A1 = . . . = Ai−1 = 〈O〉.

� If n is even, D(X) = 〈S+, S−,O, . . . ,O(n− 1)〉 for spinor bundles S+ and S−. X has a
Lefschetz decomposition with i = n, A0 = 〈S+, S−,O〉 and A1 = . . . = Ai−1 = 〈O〉.

� By mutation we also get that D(X) = 〈S+,O, S+(1),O(1), . . . ,O(n− 1)〉. Then we get a
Lefschetz decomposition with i = n, A0 = A1 = 〈O, S+〉 and A2 = . . . = Ai−1 = 〈O〉.

4. For any X we have a stupid decomposition with i = 1 and A0 = D(X).

Proposition 1.8. Let D(X) = 〈A0,A1(1), . . . ,Ai−1(i− 1)〉 be a Lefschetz decomposition, H ∈ Γ(X,OX(1))
and i : XH = {H = 0} ↪→ X. Note that XH does not have to be smooth. Then

1. The left derived functor i∗|Ak
: Ak → D(XH) is fully faithful for k ≥ 1. (It is not fully faithful on

〈Ak,Ak+1(1)〉.)

2. i∗(A1(1)), . . . , i∗(Ai−1(i− 1)) are semiorthogonal in D(XH).

3. D(XH) = 〈CH , i∗(A1(1)), . . . , i∗(Ai−1(i− 1))〉.

Proof. 1. Projection formula gives

Hom(i∗F, i∗G) = Hom(F, i∗i
∗G) = Hom(F,G⊗ i∗OXH

).

The short exact sequence on X

0→ O(−1)→ O → i∗OXH
→ 0
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gives after tensoring with G

0→ G(−1)→ G→ G⊗ i∗OXH
→ 0.

We get a long exact sequence

. . .→ Hom(F,G(−1))→ Hom(F,G)→ Hom(F,G⊗ i∗OXH
)→ . . .

As F ∈ Ak(k) and G(−1) ∈ Ak(k − 1) ⊂ Ak−1(k − 1), we know that Hom(F,G(−1)) = 0. Hence
we get an isomorphism Hom(F,G) ∼= Hom(i∗F, i∗G).

2. For k > l ≥ 1, F ∈ Ak(k) and G ∈ Al(l) the same argument as above proves semiorthogonality.

3. We need to show that i∗(Ai(i)) is an admissible subcategory of D(XH). We know that Ai(i) is an
admissible subcategory of D(X). It follows that Ai(i) is saturated and any fully faithful embedding
is admissible.

Some properties of Lefschetz decomposition

Given a Lefschetz decomposition 〈A0,A1(1), . . . ,Ai−1(i− 1)〉 we have:

� 〈A0,A0(1), . . . ,A0(r)〉 = 〈A0,A1(1), . . . ,Ar(r)〉 = 〈Ar+1(r + 1), . . . ,Ai−1(i− 1)〉⊥.

The last equality is by the semiorthogonality of the Lefschetz decomposition. The first equality
follows from it and from the obvious inclusions

〈A0,A1(1), . . . ,Ar(r)〉 ⊂ 〈A0,A0(1), . . . ,A0(r)〉 ,

〈A0,A0(1), . . . ,A0(r)〉 ⊂ 〈Ar+1(r + 1), . . . ,Ai−1(i− 1)〉⊥ .

� A Lefschetz decomposition can be reconstructed from its A0 via the recurrent formula

Ar =⊥ A0(−r) ∩ Ar−1.

Question: Find nice sufficient conditions on A0 which would imply that A0 extends to a Lefschetz
decomposition. The subtlety here is in showing admissibility.

� There is a natural partial order on the set of Lefschetz decompositions, A• ≤ A′• if A0 ⊂ A′0.

Definition 1.9. A Lefschetz decomposition is minimal if it is minimal with respect to the above partial
order.

Question: Is it true that a minimal Lefschetz decomposition always exists?
Can a decreasing sequence of admissible subcategories be infinite?
If A• < A′• then A0 ( A′0 and〈

A′1(1), . . . ,A′j−1(j − 1)
〉

= ⊥A′0 ( ⊥A0 = 〈A1(1), . . . ,Ai−1(i− 1)〉 .

Question: How can one prove a Lefschetz decomposition to be minimal?

Definition 1.10. A Lefschetz decomposition is rectangular if A0 = A1 = . . . = Ai−1.

Examples:

� For X = Pn, an exceptional collection 〈O, . . . ,O(n)〉 gives a rectangular Lefschetz decomposition
with respect to O(d) if and only if n+ 1 is divisible by d.

� For X = Gr(2, 5) and the Plücker embedding i : X ↪→ P9 the Kapranov’s exceptional collection
gives a Lefschetz decomposition

D(X) = 〈A0, . . . ,A3(3)〉

with respect to i∗O(1). Here

A0 =
〈
O,U∗, S2(U∗), S3(U∗)

〉
, A1 =

〈
O,U∗, S2(U∗)

〉
, A2 = 〈O,U∗〉 , A3 = 〈O〉

and U is the tautological vector bundle on Gr(2, 5).
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There is also another, rectangular Lefschetz decomposition with respect to the same line bundle

D(X) = 〈A′0, . . . ,A′4(4)〉

with A′0 = . . . = A′4 = 〈O,U∗〉. This Lefschetz decomposition gives by Proposition 1.8 eight
exceptional objects on a hyperplane section of X; if the section is generic these objects generate
D(XH). Note that Kapranov’s decomposition gives only six exceptional objects on XH .

Lemma 1.11. Assume that 〈A0, . . . ,Ai−1(i− 1)〉 is a rectangular Lefschetz decomposition and
ωX = OX(−i). Then A• is minimal.

Proof. Suppose, contrary to our claim, that A′• < A•. Then A′0 ( A0 and we have〈
A′0,A′1(1), . . . ,A′i−1(i− 1)

〉
( 〈A0,A0(1), . . . ,A0(i− 1)〉

since both the LHS and the RHS are semiorthogonal decompositions and A′r(r) ⊂ A′0(r) ( A0(r).
Since the RHS is the whole of D(X), we conclude that A′i is non-trivial. Let F be a non-zero element

of A′i. We have by Serre duality

Hom• (F, F ) ' Hom• (F, F (−i)[dimX]) = Hom• (F (i), F ) [dimX] (1)

and the RHS of (1) is zero since Hom•(A′i(i),A′0) = 0 by the semiorthogonality of A′•. But this is
impossible, as the LHS of (1) must contain the identity endomorphism of F .

For an embedding f : X → P(V ) and a Lefschetz decomposition with respect to OX(1) = f∗(OP(V )(1))
we get a category CH in D(XH) for every hyperplane H ∈ P(V ∗). Hence we get a family of categories
{CH}H∈P(V ∗). To understand how these categories fit together we look at the universal hyperplane section
X = {(x,H) ∈ X × P(V ∗) |x ∈ XH} of X. X fits into a diagram

X //

��

X × P(V ∗)

yy
P(V ∗)

By the Küneth formula we have

HomX×P(V ∗)(F1 �G1, F2 �G2) = HomX(F1, F2)⊗HomP(V ∗)(G1, G2)

and, therefore, we obtain a Lefschetz decomposition

D(X × P(V ∗)) = 〈A0 �D(P(V ∗)), . . . ,Ai−1(i− 1) �D(P(V ∗))〉 ,

where
Ak �D(P(V ∗)) := {A� F |A ∈ Ak, F ∈ D(P(V ∗)} ↪→ D(X × P(V ∗)).

It is a Lefschetz decomposition with respect to OX(1) � L for any line bundle L on P(V ∗).
X ⊂ X × P(V ∗) is a divisor whose structure sheaf OX fits into a short exact sequence

0→ OX(−1) �OP(V ∗)(−1)→ OX×P(V ∗) → OX → 0.

Arguing as in the proof of Prop. 1.8 we obtain a semiorthogonal decomposition

D(X ) = 〈C,A1(1) �D(P(V ∗)), . . . ,Ai−1(i− 1) �D(P(V ∗))〉 .

The category C is the total family of {CH} in the sense detailed below.

Base change for semiorthogonal decompositions

Definition 1.12. For X
p−→ S a subcategory T ⊂ D(X) is S-linear is for any F ∈ Dperf(S) we have an

inclusion T ⊗ p∗F ⊂ T .

Remark 1.13. A pullback of F ∈ D(S) can be unbounded; if p is flat then we can replace Dperf(S) by
D(S) in the definition above.
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Definition 1.14. Morphisms p : X → S and f : S′ → S are Tor-independent if for any x ∈ X and

s′ ∈ S′ such that p(x) = s = f(s′) the groups Tor
OS,s

>0 (OX,x,OS′,s′) are zero.

Remark 1.15. If either p or f is flat then p and f are Tor-independent. If p and f are closed embeddings
than they are Tor-independent if and only if they are transversal.

Let X ′ = X ×S S′ and consider the diagram

X ′
f̃ //

p̃

��

X

p

��
S′

f // S.

Theorem 1.16. Let D(X) = 〈T0, . . . , Tn−1〉 be an S-linear semiorthogonal decomposition. If p and f are
Tor-independent, there exists an S′-linear semiorthogonal decomposition D(X ′) =

〈
T ′0 , . . . , T ′n−1

〉
such

that f̃∗(T perf
i ) ⊂ T ′i . Here, T perf

i = Ti ∩Dperf(X). In fact, T ′i is the completion of T perf
i �Dperf(S′) with

respect to certain homotopy colimits.

We have the following picture

XH
ι //

��

X //

��

X × P(V ∗)

Spec(k) // P(V ∗)

As the subcategories Ai(i) �D(P(V ∗)) are D(P(V ∗))-linear, the category

C =⊥ 〈A1(1) �D(P(V ∗)),A2(2) �D(P(V ∗)), . . . ,Ai−1(i− 1) �D(P(V ∗))〉

is also D(P(V ∗))-linear. The map X → P(V ∗) is flat and hence by the base change CH is the completion
of ι∗

(
Cperf

)
with respect to certain homotopy colimits.

2 Main theorem

Let γ : C = Tot{CH}H∈P(V ∗) → D(X ) be the natural inclusion and let γ∗ : D(X )→ C be its left adjoint.

Let π be the projective bundle map X π−→ X.

Definition 2.1. A Homological Projective Dual of

(X, f : X → P(V ),A•),

where A• = Ai−1 ⊂ . . . ⊂ A0 is a Lefschetz decomposition of D(X) with respect to f∗(O(1)), is

(Y, g : Y → P(V ∗),B•),

where B• = Bj−1 ⊂ . . . ⊂ B0 is a Lefschetz decomposition of D(Y ) with respect to g∗(O(1)), such that there
exists E ∈ D(Y ×P(V ∗) X ) inducing a P(V ∗) -linear equivalence ΦE : D(Y )→ C and γ∗π∗(A0) = ΦE(B0).

Theorem 2.2. Let (Y, g,B•) be a Homological Projective Dual of (X, f,A•). Choose L ⊂ V ∗ of dimension
r and put XL = X ×P(V ) P(L⊥), YL = Y ×P(V ∗) P(L), where L⊥ = Ker(V → L∗). If

dimXL = dimX − r, dimYL = dimY −N + r (2)

(where N = dimV ) then

D(XL) = 〈CL,Ar(r), . . . ,Ai−1(i− 1)〉
D(YL) = 〈CL,BN−r(N − r), . . . ,Bj−1(j − 1)〉 .

Remark 2.3. If XL and YL do not have expected dimensions then we do not have Tor-independence
and have to consider a derived fiber product.
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It is possible to show that
j = N − 1−max{k | Ak = A0}.

Lefschetz decompositions A• and B• fit into the following picture.

r
N

A0 Ar−1

B0Bj−1

〈Ar(r), . . . ,Ai−1(i− 1)〉

In particular, if the decomposition A• is rectangular then either CL = D(XL) or CL = D(YL).
Example. Let X be Gr(2,W ) ⊂ P(Λ2W ) embedded via the Plücker embedding and let dimW = 5.

Recall that D(X) has a rectangular Lefshetz decomposition

D(X) = 〈A0,A1(1), . . . ,A4(4)〉

with each Ai = 〈O,U∗〉 where U is the tautological bundle on X. We have N = 10 and the picture for
A• is

The homological projective dual of X is Y = Gr(2,W ∗) ⊂ P(Λ2W ∗). We have dimX = dimY = 6.

� For r = 1 the condition (2) forces YL to be empty. Hence CL = 0 and D(XL) = 〈A1(1), . . . ,A4(4)〉
is a full exceptional collection consisting of eight vector bundles.

� For r = 2 and general L we have again YL = ∅, CL = 0 and D(XL) = 〈A2(2), . . . ,A4(4)〉 is a full
exceptional collection of six vector bundles.

� For r = 3 an general L we have YL = ∅, CL = 0 and XL, a Fano threefold of index two and degree
five, has a semiorthogonal decomposition D(XL) = 〈A3(3),A4(4)〉.

� For r = 4 and general L the variety YL is a union of five points, CL = D(YL) and XL has a
semiorthogonal decomposition D(XL) = 〈D(YL),A4(4)〉. If YL is smooth, then D(YL) is generated
by five exceptional objects and XL is a del Pezzo of degree 5.

� For r = 5 and general L both XL and YL are elliptic curves and D(XL) = D(YL).

� For r = 6, . . . 10 the situation is symmetric.

Lemma 2.4. Let (Y, g,B•) be a homological projective dual of (X, f,A•). Then the set Crit(g) of critical
values of g is the classical projective dual of X

X∨ = {H ∈ P(V ∗) |XH is singular }.

6



Indeed, by definition there is a semiorthogonal decomposition

D(X ) = 〈D(Y ),A1(1) �D(P(V ∗)),A2(2) �D(P(V ∗)), . . . ,Ai−1(i− 1) �D(P(V ∗))〉 .

By base change we get that

D(XH) = 〈D(YH),A1(1), . . . ,Ai−1(i− 1)〉 .

Recall also that a projective scheme Z is smooth if and only if D(Z) is Ext-finite. The categories
Ai(i) are subcategories of D(X) and therefore Ext-finite. Using this fact and the above semiorthogonal
decomposition one can show that XH is smooth if and only if YH is . Then for a hyperplane H ∈ P(V ∗)
we’ve

H ∈ Crit(g)⇔ YH is not smooth ⇔ XH is not smooth ⇔ H ∈ X∨.

Remark 2.5. If (Y, g,B•) is an HPD of (X, f,A•) then Y is smooth (uses the fact that X is smooth).

For a Lefschetz decomposition

D(X) = 〈A0,A1(1), . . . ,Ai−1(i− 1)〉

denote by ak the category A⊥k+1 ∩ Ak, called the k-th primitive category of the Lefschetz decomposition
of D(X). Then Ak = 〈ak,Ak+1〉 = 〈ak, . . . , ai−1〉. In particular

A0 = 〈a0, . . . , ai−1〉 .

Denote by α∗0 : D(X)→ A0 the left adjoint to the inclusion functor. Then α∗0(Ak(k)) = 0 and
α∗0(ak(l)) = 0 for l ≤ k.

Lemma 2.6. α∗0(ak(k + 1))→ A0 is fully faithful and

A0 = 〈α∗0(a0(1)), α∗0(a1(2)), . . . α∗0(ai−1(i)))〉 .

The decomposition in the above lemma is the dual primitive decomposition of A0.

Recall the composition of functors D(X)
π∗−→ D(X )

γ∗−→ C.

Lemma 2.7. The composition γ∗ ◦π∗ is fully faithful on A0 and we denote its image by C0 = γ∗π∗(A0).

The category C0 ⊂ C is admissible because A0 is saturated. For any k > 0 define category Ck as

γ∗π∗
(
〈α∗0(a0(1)), α∗0(a1(2)), . . . , α∗0(aN−k−2(N − k − 1))〉

)
⊂ C0.

Since C is P(V ∗)-linear the map p : X → P(V ∗) allows to define the endofunctor [−](1) on the category
C by F 7→ F ⊗ p∗OP(V ∗)(1).

Lemma 2.8. C• is a Lefshetz decomposition of C with respect to the endofunctor [−](1) defined above.

This is the dual decomposition of C ∼= D(Y ). These categories will be used in the proof of the main
theorem.

Theorem 2.9. Let (X, f,A•) let g : Y → P(V ∗) and E ∈ D(X ×P(V ∗) Y ) be such that

1. ΦE is fully faithful and factors through C, i.e. ΦE = D(Y )
φE−−→ C γ−→ D(X ) for some fully faithful

φE ;

2. D(X)
π∗−→ D(X )

Φ∗E−−→ D(Y ) is fully faithful on A0;

3. B0,B1(1), . . . ,Bj−1(j − 1) are semiorthogonal in D(Y ), where Bk = Φ∗E(Ck).

Then Theorem 2.2 holds. In particular (Y, g,B•) is a homological projective dual to (X, f,A•).

There is also a relative version of Theorem 2.2. Consider a base scheme T and let L ⊂ V ∗ ⊗ OT be
a vector subbundle of rank r. If the dimension of V is N then the rank of L⊥ = Ker(V ⊗OT → L∗) is
N − r. Define the family of linear sections XL = X ×P(V ) PT (L⊥) and YL = Y ×P(V ∗) PT (L).
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Theorem 2.10. If (Y, g,B•) is an HPD of (X, f,A•) then for any base scheme T and any L ⊂ V ∗ ⊗OT
such that

dim(XL) = dim(X) + dim(T )− r

dim(YL) = dim(Y ) + dim(T )−N + r

there exists a triangulated category CL and semiorthogonal decompositions

D(XL) = 〈CL,Ar(r) �D(T ), . . .Ai−1(i− 1) �D(T )〉 ,

D(YL) = 〈CL,BN−r(N − r) �D(T ), . . . ,Bj−1(j − 1) �D(T )〉 .

Before sketching out the proof of the Theorem 2.10 we need to introduce the following auxilliary
notion:

Definition 2.11. A functor Φ: T1 → T2 is right splitting if

1. Ker Φ = {T ∈ T1 | Φ(T ) = 0} is right admissible, i.e. T1 =
〈
(Ker Φ)⊥,Ker Φ

〉
;

2. Φ|(Ker Φ)⊥ is fully faithful;

3. Im Φ is right admissible in T2, i.e. T2 =
〈
(Im Φ)⊥, Im Φ

〉
.

NB: If a morphism is not fully faithful then, in general, its image is not a triangulated subcategory.

Lemma 2.12. The following are equivalent:

1. Φ is right splitting;

2. There exists a right adjoint Φ! and the composition of the canonical morphism of functors
η : Id→ Φ!Φ with Φ gives an isomorphism Φη : Φ → ΦΦ!Φ (then also εΦ : ΦΦ!Φ → Φ is an
isomorphism);

3. There exists a right adjoint Φ!, we have

T1 =
〈
Im Φ!,Ker Φ

〉
, T2 =

〈
Ker Φ!, Im Φ

〉
and Φ and Φ! give quasi-inverse equivalences Im Φ! ' Im Φ.

4. There exists T and T1
i←− T j−→ T2 such that i is left admissible, j is right admissible and Φ = j ◦ i∗.

Sketch of the proof of Theorem 2.10. Any family of r-planes in V ∗ pulls back from the tautological bundle
over the grassmanian Pr = Gr(r, V ∗). It is therefore enough to prove the theorem for the base scheme T
being Pr and the family L being the tautological bundle Lr ⊂ V ∗ ⊗OPr

. The case of general T and L
is then obtained by base change.

So define the universal linear sections

Xr = (X ×Pr)×P(V )×Pr
PPr

(L⊥r ),

Yr = (Y ×Pr)×P(V ∗)×Pr
PPr

(Lr).

Explicitly, in terms of the maps X
f−→ P(V ) and Y

g−→ P(V ∗), we have

Xr = {(x, L, v) ∈ X ×Pr × P(V ) | v ∈ L⊥, f(x) = v} =

= {(x, L) ∈ X ×Pr | L ⊂ f(x)⊥}

and

Yr = {(y, L, v) ∈ Y ×Pr × P(V ∗) | v ∈ L, g(y) = v} =

= {(y, L) ∈ Y ×Pr | L⊥ ⊂ g(y)⊥}.

From this description we see that Xr → X is a fiber bundle with fibers Gr(r,N − 1) and Yr → Y is a
fiber bundle with fibers Gr(N − r,N − 1). The varieties X and Y are smooth and hence so are Xr and
Yr. Finally, note that

X1 = X , Y1 = Y and Xn−1 = X, Yn−1 = Y.
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Consider the commutative diagram

Xr ×Pr
Yr

ψr

��
X × Y

��

Q(X,Y )oo

��
P(V )× P(V ∗) Qoo

where Q(X,Y ) = X ×P(V ∗) Y and Q = {(v,H) ∈ P(V )× P(V ∗) | v ∈ H} is the incidence quadric.
Let E ∈ D(Q(X,Y )) be the object in the definition of the homological projective dual. Then

Er = ψ∗rφ∗E is an object of D(Xr×Pr
Yr) and we write Φr for the corresponding functor D(Xr)→ D(Yr).

We then show by induction on r that for all r ≥ 1 the functor Φr satisfies the condition (2) of Lemma
2.12 and is therefore right splitting.

Since Y1 = Y and X1 = X , the base case of the induction (r = 1) follows from the definition of Y
being a homological projective dual of X. To establish the inductive step we change the base to the flag
variety Sr = Fl(r − 1, r;V ∗). For

X̃r+1 = Xr+1 ×Pr+1 Sr+2, X̃r = Xr ×Pr Sr+1,

Ỹr = Yr ×Pr
Sr+1, Ỹr+1 = Yr+1 ×Pr+1

Sr+2

we have it that X̃r+1 is a divisor in X̃r and Ỹr is a divisor in Ỹr+1. Using this presentation we can

compare Φr−1, Φr, Φ̃r−1 and Φ̃r. This allows us to establish the inductive step: if Φr−1 is right splitting,
then so is Φr.

Once it is established that Φr is right splitting, it follows that

D(Xr) =
〈
Im Φ!

r,Ker Φr
〉
,

D(Yr) =
〈
Ker Φ!

r, Im Φr
〉

with Im Φ!
r ' Im Φr. We therefore set CLr

to be Im Φr and it remains to show that

Ker Φ!
r = 〈BN−r(N − r) �D(Pr), . . . ,Bj−1(j − 1) �D(Pr)〉 , (3)

Ker Φr = 〈Ar(r) �D(Pr), . . . ,Ai−1(i− 1) �D(Pr)〉 . (4)

One can easily check that Ak(k) �D(Pr) ⊂ Ker Φr for k ≥ r and that Bk(k) �D(Pr) ⊂ Ker Φ!
r for

k ≥ N − r. The issue is to show that the semiorthogonal collections in the RHS of (3)-(4) are full, i.e.
they generate the whole of Ker Φr and Ker Φ!

r. For Ker Φ!
r this is done by an ascending induction on r

and for Ker Φr — by a descending induction on r. In both cases, the inductive step uses the base change
to Sr = Fl(r − 1, r;V ∗) described above.

3 Examples

1). Take X = P(V ) for a vector space V of dimension N , f = id : P(V ) → P(V ) and Lefschetz
decomposition

D(X) =
〈
O,O(1), . . . ,O(N − 1)

〉
with A0 = 〈O〉. Then X ⊂ X × P(V ∗) is the incidence quadric and we have a semiorthogonal
decomposition

D(X ) = 〈C,O(1) �D(P(V ∗)), . . . ,O(N − 1) �D(P(V ∗))〉 .

On the other hand, let E → P(V ∗) be the rank N − 1 incidence vector bundle, whose fiber over
H ∈ P(V ∗) is H ⊂ V . Then X = PP(V ∗)(E) and hence, by a theorem of Orlov, C = 0. Hence the
homological projective dual to (P(V ), Id,A•) is Y = ∅.
The picture is (case N = 6):
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1′). Consider the same situation as before but with the Lefschetz decomposition

D(X) =
〈
〈O,O(1)〉 ,O(2), . . . ,O(N − 1)

〉
with A0 = 〈O,O(1)〉. Then

D(X ) =
〈
C,O(2) �D(P(V ∗)), . . . ,O(N − 1) �D(P(V ∗))

〉
and it follows from the previous example that C = O(1) � D(P(V ∗). Therefore C is equivalent
to D(P(V ∗)), so the homological projective dual is Y = P(V ∗) with the Lefschetz decomposition
defined by B0 = 〈O,O(1)〉.
The picture is (case N = 6):

1′′). Consider the same situation as before but with the Lefschetz decomposition

D(X) =
〈
〈O,O(1),O(2)〉 ,O(3), . . . ,O(N − 1)

〉
withA0 = 〈O,O(1),O(2)〉. Then arguing as before we get C = 〈O(1) �D(P(V ∗)),O(2) �D(P(V ∗))〉
and CH = 〈O,O(1)〉 ⊂ D(PN−2) is a “noncommutative projective space”. There is no geometrical
homological projective dual Y , but instead we can consider C itself, a fibration in noncommutative
projective spaces, to be the “noncommutative homological projective dual” of (P(V ), Id,A•).

For the next few examples, we need to consider a version of the homological projective duality
where we consider X relative to some base S. Namely, let X and Y be algebraic varieties over
a base scheme S with X globally smooth over the base field k. Suppose we have projective maps
f : X → S × P(V ), g : Y → S × P(V ∗) and S-linear Lefschetz decompositions A• and B• of D(X)
and D(Y ), respectively. Then 〈Y, g,B•〉 is a homological projective dual of 〈X, f,A•〉 relative to S if
there exists E ∈ D(Y ×S×P(V ∗) X ) inducing a S × P(V ∗)-linear equivalence ΦE : D(Y ) → C such that
γ∗π∗(A0) = ΦE(B0).

The Theorems 2.2 and 2.10 can be shown to hold in this relative setting. Note that we’ve only asked
X to be smooth over the base field k. So the individual fibers of X over S might be singular. Indeed, we
can then obtain by base change the Theorems 2.2 and 2.10 for these singular fibers.

2). Let S be a smooth, not necessarily projective variety. Let E be a rank k vector bundle on S
and X = PS(E). Assume that f : X ↪→ S × P(V ) is linear on fibers, i.e. it is defined by some
ψ : E ↪→ OS⊗V . Let φ : OS⊗V ∗ → E∗ be the map dual to ψ. Note that f∗OS×P(V )(1) = OX/S(1).

By a theorem of Orlov X has a Lefschetz decomposition

D(X) =
〈
D(S), D(S)⊗OX/S(1), . . . , D(S)⊗OX/S(k − 1)

〉
with A0 = D(S). The universal hyperplane section of X fits into the diagram

X ⊂

�� ''

PS(E)× P(V ∗) = PS×P(V ∗)(E)

Pk−1
vv

P(V ∗) S × P(V ∗)

For any point (s,H) ∈ S × P(V ∗) the fiber Xs,H in P(Es) consists of those lines of Es which are
mapped by ψs : Es → V to the hyperplane H ⊂ V . In other words, it is precisely the vanishing
set in P(Es) of φs(H) ⊂ E∗s . Thus there are two possibities: if ψs(H) is a line in E∗s , then Xs,H is
the corresponding hyperplane in P(Es). On the other hand, if φs(H) = 0 then Xs,H is the whole of
P(Es).

Let E⊥ be the kernel of φ. For any s ∈ S, restricting to s the short exact sequence

0→ E⊥ ↪→ OS ⊗ V ∗
φ−→ E∗ → 0
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we deduce that φs(H) = 0 ⇔ H ⊂ E⊥s . So the locus of the points in S × P(V ∗) ' PS(OS ⊗ V ∗)
where Xs,H is the whole of P(Es) is precisely PS(E⊥). Thus, the picture is

X

generically Pk−2

��

PS(E)×S PS(E⊥)? _oo

Pk−1

��
S × P(V ∗) PS(E⊥)? _oo

In particular, for k = 2 the map X → S × P(V ∗) is simply the blow-up of PS(E⊥).

We have the semiorthogonal decomposition

D(X ) =
〈
C, D(S × P(V ∗))⊗O(1), . . . D(S × P(V ∗))⊗O(k − 1)

〉
.

Away from PS(E⊥), the variety X is an Pk−2-fiber bundle, so the semiorthogonal collection〈
D(S × P(V ∗))⊗O(1), . . . D(S × P(V ∗))⊗O(k − 1)

〉
generates everything there. In other words, the restriction of C away from PS(E⊥) is 0. On the
other hand, over PS(E⊥) we’ve a Pk−1-fiber bundle, so the restriction of C to PS(E⊥) is D(PS(E⊥)).
It can be shown that, indeed, C = D(PS(E⊥)) and Y = PS(E⊥).

2′). Suppose we have a inclusion f : S ↪→ P(V ). Set the vector bundle E in the previous example to be
f∗OP(V ∗)(−1), then X = PS(E) = S. The Orlov’s Lefschetz decomposition is the stupid Lefschetz
decomposition A0 = D(X). We’ve

E⊥ = Ker(V ∗ ⊗OX → OX(1)) = ΩP(V )(1)|X

and by the previous example X → S × P(V ∗) is 0 outside PS(E⊥), while over PS(E⊥) it is an
isomorphism. So X = PS(E⊥) is a homological projective dual of X over itself.

2′′). Given vector spaces A and B we can consider X = P(A) × P(B) over S = P(A). Write X as
PP(A)(E) for B⊗OP(A)(−1). Take, as usual, the Lefschetz decomposition with A0 = D(P(A)) with
respect to OX/P(A)(1).

The embedding
ψ : B ⊗OP(A)(−1) ↪→ B ⊗A⊗OP(A)

defines the embedding
f : P(B)× P(A) ↪→ P(B ⊗A)× P(A).

We have
E⊥ = Ker(B∗ ⊗A∗ ⊗OP(A) → B∗ ⊗OP(A)(1)) = B∗ ⊗ ΩP(A)(1)

and so Y = PPA
(B∗ ⊗ ΩP(A)(1)) is a homological projective dual of 〈X, f,A•〉.

If A is two dimensional then ΩP(A)(1) is a line bundle and Y = P(A)× P(B∗) ∼= P(A∗)× P(B∗).

3). For X = P(W ) let f be ν2 : P(W ) → P(S2W ), the second Veronese embedding, and take the
Lefschetz decomposition with A0 = 〈O,O(1)〉. Then X is the universal quadric which fits into the
diagram

XQ

��

⊂ X

��

⊂ P(W )× P(S2W ∗)

Q ∈ P(S2W ∗)

We get the semiorthogonal decomposition

D(X ) =
〈
C, D(P(S2W ∗))⊗O(2), . . . , D(P(S2W ∗))⊗O(n− 1)

〉
.

By a result of Kapranov, if Q is a smooth quadric then CQ = 〈S〉 or CQ = 〈S+, S−〉. To understand
what happens for a singular Q we recall the definition of a Clifford algebra. Given a quadratic form
q ∈ S2W ∗ we can define

Cl(W, q) = T (W )/(w ⊗ w′ + w′ ⊗ w = 2 〈w,w′〉 1),
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where T (W ) is the free tensor algebra on W and 〈w,w′〉 is the symmetric bilinear form
1
2 (q(w + w′)− q(w)− q(w′)). Algebra Cl(W, q) is Λ•W as a vector space but it has a different
multiplication. Because the defining relation is not homogeneous Cl is not Z -graded. However, it
has Z/2 grading, Cl = Cl0⊕Cl1; Cl0 is a subalgebra and Cl1 is a Cl0-submodule with a bilinear
map Cl1⊗Cl1 → Cl0.

Then for any Q ∈ P(S2W ∗) we’ve CQ ∼= D(Cl0(W, q) for any quadratic form q ∈ S2W ∗ which
defines Q. If the bilinear form associated to q is non-degenerate then D(Cl0) is a matrix algebra
or a product of two matrix algebras. It follows that C ∼= D(P(S2W ∗),Cl0), so the HPD of X is a
noncommutative variety Y = (P(S2W ∗),Cl0) for a sheaf of Clifford algebras Cl0.

3′). For the third Veronese embedding ν3 : P(W ) → P(S3W ) the result depends on n = dimW . For
n = 3 we get the stupid decomposition. For n = 4 the dual is Y → P(S3W ∗) with a generic fiber
being a finite set of points. For n = 6 we get a fibration in noncommutative K3 surfaces.

For the final example, let X = Gr(2,W ) and let f : X → P(Λ2W ) be the Plücker embedding. We
assume that char(k) = 0 and denote by U the tautological vector bundle on X.

Kapranov constructed a full exceptional collection on X with
(
n
2

)
elements, {ΣαU∗}, where α is Young

diagram that fits into a rectangle 2 cells tall and n− 2 cells wide. The order on the collection is the same
as the inclusion order on Young diagrams.

Adding a column on the left to a diagram α is twists ΣαU∗ by O(1). Hence the Kapranov’s collection
is 〈

O,U∗, . . . , Sn−2(U∗),O(1),U∗(1), . . . , Sn−3(U∗)(1), . . . ,O(n− 2)
〉
.

So X has a Lefschetz decomposition:

A0 =
〈
O,U∗, . . . , Sn−3(U∗), Sn−2(U∗)

〉
,

A1 =
〈
O,U∗, . . . , Sn−3(U∗)

〉
. . .

An−2 =
〈
O
〉

In particular, |A0| = n− 1, |A1| = n− 2, etc.

There is also a smaller Lefchetz decomposition with A0 =
〈
O,U∗, . . . , Sb

n
2 c−1(U∗)

〉
.

If n = 2m+ 1 this decomposition is rectangular with A0 = . . . = A2m =
〈
O,U∗, . . . , Sm−1U∗

〉
.

If n = 2m then A0 = . . . = Am−1 =
〈
O,U∗, . . . , Sm−1(U∗)

〉
and Am = . . . = A2m−1 =〈

O,U∗, . . . , Sm−2(U∗)
〉
.

For other Gr(k,W ) similar Lefschetz decompositions were constructed by Fonarev.
The homological projective dual to Gr(2,W ) must be a variety Y and g : Y → P(Λ2W ∗) such that

Crit(g) is

X∨ = Pf(W ∗) =
{
λ ∈ P(Λ2W ∗) | rk(λ) ≤ 2(

⌊n
2

⌋
− 1)

}
.

For n = dim(W ) ≤ 5 the Pffafian variety Pf(W ∗) itself is the HPD of X. For n > 5, however, Pf(W ∗)
becomes singular. If we define

Pft(W
∗) =

{
λ ∈ P(Λ2W ∗) | rk(λ) ≤ 2t

}
then the singular locus of Pf(W ∗) is Pfbn

2 c−2(W ∗).

Denote by G = Gr(2(
⌊
n
2

⌋
− 1),W ∗) and by K the tautological bundle on G. We can construct a

resolution
PG(Λ2K) =

��

{
(λ, P ) ∈ P(Λ2W ∗)×G | Im(λ) ⊂ P

}

Pf(W ∗).

We check the rank of the Grothendieck group to see whether PG(Λ2K) can be the HPD of X. The
Lefschetz decomposition A• of X consists of

(
n
2

)
objects in a

⌊
n
2

⌋
cells high and

(
n
2

)
= dim(Λ2W ∗) cells

wide rectangle. Therefore the expected rank of K0(Y ) is (
⌊
n
2

⌋
− 1)

(
n
2

)
. Thus

� For n = 6 the expected rank of K0(Y ) is 30.

� For n = 7 the expected rank of K0(Y ) is 42.
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On the other hand

rk
(
K0

(
PG(Λ2K)

))
= rk(K0(G))× rk (K0(fiber)) = rk(K0(G))× rk(Λ2K).

For n = 6, 7 the fiber is P5. Thus, we see that

� For n = 6 the rank of K0

(
PG(Λ2K)

)
is 90.

� For n = 7 the rank of K0

(
PG(Λ2K)

)
is 210.

We can construct a noncommutative resolution if there exists a relative Lefschetz decomposition of
D over Z:

Lemma 3.1. Suppose there exists a Z-linear Lefschetz decomposition

D(D) = 〈Dj−1(1− j), . . . ,D1(−1),D0〉

Then:

1. i∗ is fully faithful on Dk for k ≥ 1,

2. i∗(Dj−1(1− j)), . . . , i∗(D1(−1)) are semi-orthogonal,

3. D(Ỹ ) = 〈i∗(Dj−1(1− j)), . . . , i∗(D1(−1)), C〉 where C = {F ∈ D(Ỹ ) | i∗F ∈ D0}.

4. Suppose, additionally, that D0 is the Karoubi completion of 〈i∗E ⊗ p∗D(Z)〉 where E is a vector
bundle on Ỹ . Suppose also that E is tilting over Y , i.e. Rπ∗ End(E) is a single sheaf of algebras
on Y . Then

C ∼= D(Y, π∗ End(E)).

Let n = 7. Then Z = Gr(2, 7) and D is a fiber bundle over Z with fiber Gr(2, 5). There exists a
rectangular Lefschetz decomposition of D = F (2, 4;W ∗) with

D0 = . . . = D4 = 〈D(Z), D(Z)⊗ S∗〉

where S is the quotient of 4-dimensional tautological vector bundle by the 2-dimensional tautological
vector bundle on F (2, 4;W ∗). Therefore

rk (K0(C)) = rkK0(Ỹ )− (rkK0(Gr(2, 5))− 2)× rk (K0(Z)) = 210− 168 = 42

and (Y, π∗(End(OỸ ⊕K∗))) is the noncommutative homological projective dual to Gr(2, 7). Here K is a

certain bundle on Ỹ which restricts to S on D. Analogously for n = 6.

Conjecture 3.2. For n > 7 the homological projective dual of Gr(2,W ) is an appropriate
noncommutative resolution of the Pffafian variety Pf(W ∗).

NB:For n > 7 the exceptional fibre is much more complicated.
By the work of Hori Homological Projective Duality is related to non-linear sigma models. From

string theory it follows that an appropriate noncommutative resolution of Pfk(W ) should be homological
projective dual of a noncommutative resolution of Pfbn

2 c−k(W ∗). These resolutions are known for

Pf2(8)↔ Pf2(8) and Pf2(9)↔ Pf2(9). However, the proof of the duality is not known.
We have already seen that Σ1 = P(W ) ⊂ P(S2W ) has the homological projective

dual Y = (P(S2W ∗), Cl0). We conjecture that the homological projective dual of (ΣkW,Cl0) is
(Σn+1−kW

∗, Cl0).
Other know examples of homological projective duals are

� OGr(5, 10) ↔ OGr(5, 10),

� LGr(3, 6) ↔ Q4 ⊂ P13 – a twisted noncommutative resolution of the quartic hypersurface,

� G2Gr ↔ a twisted noncommutative resolution of Y
2:1−−→ P13 ramified in a sextic,

� Gr(3, 6) ↔ a twisted noncommutative resolution of Y
2:1−−→ P19.
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